The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Phenylthiourea     phenylthiourea

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of phenylthiourea


Psychiatry related information on phenylthiourea

  • The less sensitive non-tasters were insensitive to PTC and produced reaction times that were significantly slower than those produced for the other two groups across all of the substances tested [5].
  • The association between phenylthiocarbamide (PTC) tasting ability and psychometric variables [6].
  • Because oral texture perception is also mediated, in part, by trigeminal fibers, it has been proposed that individual differences in fat perception might also be linked to PTC/PROP taster status and taste bud density [7].

High impact information on phenylthiourea

  • The ability to taste phenylthiocarbamide (PTC) is a classic phenotype that has long been known to vary in human populations [8].
  • These results combine to suggest that balancing natural selection has acted to maintain "taster" and "nontaster" alleles at the PTC locus in humans [8].
  • A. Fisher's long-standing hypothesis that variability in PTC perception has been maintained by balancing natural selection, we examined patterns of DNA sequence variation in the recently identified PTC gene, which accounts for up to 85% of phenotypic variance in the trait [8].
  • The cytotoxicity of 2,4-dihydroxyphenylalanine was blocked by 1-phenylthiourea, an inhibitor of tyrosinase [9].
  • Retinal pigmented epithelial cells (PECs) of chicken embryos extensively and almost synchronously transdifferentiate into lens cells in medium containing phenylthiourea and testicular hyaluronidase, passing through the bipotent dedifferentiated state [10].

Chemical compound and disease context of phenylthiourea


Biological context of phenylthiourea

  • This phenotype is of genetic, epidemiologic, and evolutionary interest because the ability to taste PTC is correlated with the ability to taste other bitter substances, many of which are toxic [8].
  • Phenylthiourea, an inhibitor of the prophenoloxidase system, caused either total, partial, or no inhibition of the lectin-induced increase in phagocytosis, indicating that this immune enhancement results, in some cases, from at least two closely linked mechanisms [15].
  • Phenol oxidase inhibitors such as phenylthiourea, potassium cyanide, and sodium azide inhibited the reaction drastically, suggesting the participation of the active site copper of the enzyme in the catalysis [16].
  • Our understanding of bitter taste has advanced by combined information from discovery and study of the TAS2R family of taste receptor genes, hand in hand with genetic linkage and positional cloning studies, notably on the ability to taste phenylthiocarbamide (PTC) [17].
  • Recently, a major locus on chromosome 7q was found in association with the taste sensitivity to phenylthiocarbamide (PTC) in humans [18].

Anatomical context of phenylthiourea


Associations of phenylthiourea with other chemical compounds


Gene context of phenylthiourea


Analytical, diagnostic and therapeutic context of phenylthiourea


  1. Phenylthiocarbamide taste sensitivity in chronic peptic ulcer. Li, Z.L., McIntosh, J.H., Byth, K., Stuckey, B., Stiel, D., Piper, D.W. Gastroenterology (1990) [Pubmed]
  2. Incorporation of [125I]-5-iodo-2-thiouracil in cultured hamster, rabbit, and human melanoma cells. Broxterman, H.J., van Langevelde, A., Bakker, C.N., Boer, H., Journée-de Korver, J.G., Kaspersen, F.M., Kakebeeke-Kemme, H.M., Pauwels, E.K. Cancer Res. (1983) [Pubmed]
  3. TAS2R38 (phenylthiocarbamide) haplotypes, coronary heart disease traits, and eating behavior in the British Women's Heart and Health Study. Timpson, N.J., Christensen, M., Lawlor, D.A., Gaunt, T.R., Day, I.N., Ebrahim, S., Davey Smith, G. Am. J. Clin. Nutr. (2005) [Pubmed]
  4. Thiourea toxicity in mouse C3H/10T1/2 cells expressing human flavin-dependent monooxygenase 3. Smith, P.B., Crespi, C. Biochem. Pharmacol. (2002) [Pubmed]
  5. Gustatory processing differences in PTC tasters and non-tasters: a reaction time analysis. Frank, R.A., Korchmar, D.L. Physiol. Behav. (1985) [Pubmed]
  6. The association between phenylthiocarbamide (PTC) tasting ability and psychometric variables. Mascie-Taylor, C.G., McManus, I.C., MacLarnon, A.M., Lanigan, P.M. Behav. Genet. (1983) [Pubmed]
  7. Fat perception is related to PROP taster status. Tepper, B.J., Nurse, R.J. Physiol. Behav. (1997) [Pubmed]
  8. Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. Wooding, S., Kim, U.K., Bamshad, M.J., Larsen, J., Jorde, L.B., Drayna, D. Am. J. Hum. Genet. (2004) [Pubmed]
  9. In vitro studies of 2,4-dihydroxyphenylalanine, a prodrug targeted against malignant melanoma cells. Morrison, M.E., Yagi, M.J., Cohen, G. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  10. Genetic characterization of the multipotent dedifferentiated state of pigmented epithelial cells in vitro. Agata, K., Kobayashi, H., Itoh, Y., Mochii, M., Sawada, K., Eguchi, G. Development (1993) [Pubmed]
  11. Inhibition of L-tyrosine-induced micronuclei production by phenylthiourea in human melanoma cells. Poma, A., Bianchini, S., Miranda, M. Mutat. Res. (1999) [Pubmed]
  12. PROP (6-n-propylthiouracil) supertasters and the saltiness of NaCl. Bartoshuk, L.M., Duffy, V.B., Lucchina, L.A., Prutkin, J., Fast, K. Ann. N. Y. Acad. Sci. (1998) [Pubmed]
  13. Direct calorimetry of free-moving eels with manipulated thyroid status. van Ginneken, V., Ballieux, B., Antonissen, E., van der Linden, R., Gluvers, A., van den Thillart, G. Naturwissenschaften (2007) [Pubmed]
  14. The action of isoproterenol on phenylthiourea induced pulmonary edema. Combs, A.B., Jones, J. Res. Commun. Chem. Pathol. Pharmacol. (1975) [Pubmed]
  15. Innate immunity in insects: the role of multiple, endogenous serum lectins in the recognition of foreign invaders in the cockroach, Blaberus discoidalis. Wilson, R., Chen, C., Ratcliffe, N.A. J. Immunol. (1999) [Pubmed]
  16. Tyrosinase catalyzes an unusual oxidative decarboxylation of 3,4-dihydroxymandelate. Sugumaran, M. Biochemistry (1986) [Pubmed]
  17. Genetics of human taste perception. Kim, U.K., Breslin, P.A., Reed, D., Drayna, D. J. Dent. Res. (2004) [Pubmed]
  18. Bitter taste study in a sardinian genetic isolate supports the association of phenylthiocarbamide sensitivity to the TAS2R38 bitter receptor gene. Prodi, D.A., Drayna, D., Forabosco, P., Palmas, M.A., Maestrale, G.B., Piras, D., Pirastu, M., Angius, A. Chem. Senses (2004) [Pubmed]
  19. In vitro analysis of cellular metaplasia from pigmented epithelial cells to lens phenotypes: a unique model system for studying cellular and molecular mechanisms of "transdifferentiation". Itoh, Y., Eguchi, G. Dev. Biol. (1986) [Pubmed]
  20. The role of pigment cells in the brain of ascidian larva. Sakurai, D., Goda, M., Kohmura, Y., Horie, T., Iwamoto, H., Ohtsuki, H., Tsuda, M. J. Comp. Neurol. (2004) [Pubmed]
  21. In vitro metabolism of N-(5-chloro-2-methylphenyl)-N'-(2-methylpropyl)thiourea: species comparison and identification of a novel thiocarbamide-glutathione adduct. Stevens, G.J., Hitchcock, K., Wang, Y.K., Coppola, G.M., Versace, R.W., Chin, J.A., Shapiro, M., Suwanrumpha, S., Mangold, B.L. Chem. Res. Toxicol. (1997) [Pubmed]
  22. Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Chen, M.C., Wu, S.V., Reeve, J.R., Rozengurt, E. Am. J. Physiol., Cell Physiol. (2006) [Pubmed]
  23. Phenylthiourea disrupts thyroid function in developing zebrafish. Elsalini, O.A., Rohr, K.B. Dev. Genes Evol. (2003) [Pubmed]
  24. Human flavin-containing monooxygenase form 2 S-oxygenation: sulfenic acid formation from thioureas and oxidation of glutathione. Henderson, M.C., Krueger, S.K., Stevens, J.F., Williams, D.E. Chem. Res. Toxicol. (2004) [Pubmed]
  25. Functional Variants in TAS2R38 and TAS2R16 Influence Alcohol Consumption in High-Risk Families of African-American Origin. Wang, J.C., Hinrichs, A.L., Bertelsen, S., Stock, H., Budde, J.P., Dick, D.M., Bucholz, K.K., Rice, J., Saccone, N., Edenberg, H.J., Hesselbrock, V., Kuperman, S., Schuckit, M.A., Bierut, L.J., Goate, A.M. Alcohol. Clin. Exp. Res. (2007) [Pubmed]
  26. Computational studies of ligand-receptor interactions in bitter taste receptors. Miguet, L., Zhang, Z., Grigorov, M.G. J. Recept. Signal Transduct. Res. (2006) [Pubmed]
  27. Activation of tyrosinase reduces the cytotoxic effects of the superoxide anion in B16 mouse melanoma cells. Valverde, P., Manning, P., McNeil, C.J., Thody, A.J. Pigment Cell Res. (1996) [Pubmed]
  28. Synthesis and selective in vitro anti-melanoma effect of enantiomeric alpha-methyl- and alpha-ethyl-4-S-cysteaminylphenol. Yukitake, J., Otake, H., Inoue, S., Wakamatsu, K., Olivares, C., Solano, F., Hasegawa, K., Ito, S. Melanoma Res. (2003) [Pubmed]
  29. Degradation of tyrosinase induced by phenylthiourea occurs following Golgi maturation. Hall, A.M., Orlow, S.J. Pigment Cell Res. (2005) [Pubmed]
  30. Tyrosinase isozyme heterogeneity in differentiating B16/C3 melanoma. Laskin, J.D., Piccinini, L.A. J. Biol. Chem. (1986) [Pubmed]
  31. Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Wooding, S., Bufe, B., Grassi, C., Howard, M.T., Stone, A.C., Vazquez, M., Dunn, D.M., Meyerhof, W., Weiss, R.B., Bamshad, M.J. Nature (2006) [Pubmed]
  32. Structure-activity relationships defining the cytotoxicity of catechol analogues against human malignant melanoma. Kern, D.H., Shoemaker, R.H., Hildebrand-Zanki, S.U., Driscoll, J.S. Cancer Res. (1988) [Pubmed]
  33. Skin organ culture model for examining epidermal melanization. Imokawa, G., Motegi, I. J. Invest. Dermatol. (1993) [Pubmed]
  34. The influence of phenylthiourea (PTU) on the pigment epithelium and the photoreceptor cells in the developing retina of Haplochromis burtoni (Cichlidae, Teleostei). Pietzsch-Rohrschneider, I. Cell Tissue Res. (1977) [Pubmed]
  35. Phenylthiourea enhances Cu cytotoxicity in cell cultures: its mode of action. Masuda, A., Eguchi, G. Cell Struct. Funct. (1984) [Pubmed]
  36. Effect of high altitude on sensitivity to the taste of phenylthiocarbamide. Singh, S.B., Chatterjee, A., Panjwani, U., Yadav, D.K., Selvamurthy, W., Sharma, K.N. International journal of biometeorology. (2000) [Pubmed]
  37. Existence of phenol oxidase in the argasid tick Ornithodoros moubata. Kadota, K., Satoh, E., Ochiai, M., Inoue, N., Tsuji, N., Igarashi, I., Nagasawa, H., Mikami, T., Claveria, F.G., Fujisaki, K. Parasitol. Res. (2002) [Pubmed]
WikiGenes - Universities