The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Impromen     4-[4-(4-bromophenyl)-4- hydroxy-1...

Synonyms: Tesoprel, Azurene, bromperidol, Bromoperidol, Bromperidolum, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of C12498

 

Psychiatry related information on C12498

  • Interim report: high dosage bromperidol therapy of delirium tremens [4].
  • Bromperidol showed a good effect on productive schizophrenic symtpoms and caused a significant reduction of accompanying depressive symptoms [5].
  • According to a preliminary analysis of data, both descriptive and psychometric, bromperidol seems to be a potent antipsychotic drug without disturbing adrenolytic side-effects or sedation, with classical extrapyramidal effects of the hypertonia type [6].
  • Similar numbers left the study before completion (n=20, 1 RCT, RR 0.4 CI 0.1 to 1.6) and there was no clear differences between bromperidol decanoate and placebo for a list of adverse effects (n=20, 1 RCT, RR akathisia 2.0 CI 0.21 to 18.69, RR increased weight 3.0 CI 0.14 to 65.9, RR tremor 0.33 CI 0.04 to 2.69) [7].
  • No significant differences were observed for all PES items, although sulpiride was found more effective for hypochondriasis and neurotic complaint as was bromperidol for hallucination and disturbance of self-conscious [8].
 

High impact information on C12498

  • Subjects consisted of 49 acutely exacerbated schizophrenic inpatients treated with bromperidol (30 cases, mean dose +/- SD: 11.4 +/- 4.8 mg/day) or nemonapride (19 cases, 18 mg/day) [9].
  • Tissue distribution studies in the rat show a rapid and prolonged uptake into the brain, liver, and kidneys and consistently low blood concentrations that differ quantitatively from previous studies using relatively low specific activity bromperidol [10].
  • This study provides in vivo evidence of involvement of CYP3A4 in the metabolism of bromperidol and reduced bromperidol [11].
  • RATIONALE: A previously reported pharmacokinetic interaction between bromperidol and carbamazepine, an inducer of cytochrome P450 (CYP) 3A4, suggests possible involvement of CYP3A4 in the metabolism of bromperidol [11].
  • The present study thus suggests that the polymorphic CYP2D6 is not involved in the metabolism of bromperidol and reduced bromperidol to a major extent [1].
 

Chemical compound and disease context of C12498

 

Biological context of C12498

 

Associations of C12498 with other chemical compounds

 

Gene context of C12498

  • Involvement of CYP3A4 in the metabolism of bromperidol in vitro [21].
  • Although the present study is preliminary, it is suggested that the TaqI A DRD2 polymorphism is not associated with therapeutic response to bromperidol in schizophrenic patients [22].
  • Sensitive Determination of 4-(4-Bromophenyl)-4-hydroxypiperidine, a Metabolite of Bromperidol, in Rat Plasma by HPLC with Fluorescence Detection after Pre-column Derivatization Using 4-Fluoro-7-nitro-2,1,3-benzoxadiazole [23].
  • These findings suggest that acute dystonia is affected by age factor, and that daily dosage or monitoring of drug concentration is unlikely to be a useful marker for the prediction of side-effects during bromperidol treatment [24].
 

Analytical, diagnostic and therapeutic context of C12498

References

  1. Effects of various factors including the CYP2D6 genotype and coadministration of flunitrazepam on the steady-state plasma concentrations of bromperidol and its reduced metabolite. Suzuki, A., Otani, K., Mihara, K., Yasui, N., Kondo, T., Tokinaga, N., Furukori, H., Kaneko, S., Inoue, Y., Hayashi, K. Psychopharmacology (Berl.) (1998) [Pubmed]
  2. Bromperidol, a new butyrophenone neuroleptic: a review. Dubinsky, B., McGuire, J.L., Niemegeers, C.J., Janssen, P.A., Weintraub, H.S., McKenzie, B.E. Psychopharmacology (Berl.) (1982) [Pubmed]
  3. Relationship between Taq1 A dopamine D2 receptor (DRD2) polymorphism and prolactin response to bromperidol. Mihara, K., Suzuki, A., Kondo, T., Yasui-Furukori, N., Ono, S., Otani, K., Kaneko, S., Inoue, Y. Am. J. Med. Genet. (2001) [Pubmed]
  4. Interim report: high dosage bromperidol therapy of delirium tremens. Schmatolla, E. Acta psychiatrica Belgica. (1978) [Pubmed]
  5. Effects and side-effects of bromperidol in comparison with other antipsychotic drugs. Woggon, B. Acta psychiatrica Belgica. (1978) [Pubmed]
  6. Preliminary note on the antipsychotic efficacy of bromperidol. Bataille, M. Acta psychiatrica Belgica. (1978) [Pubmed]
  7. Depot bromperidol decanoate for schizophrenia. Wong, D., Adams, C.E., David, A., Quraishi, S.N. Cochrane database of systematic reviews (Online) (2004) [Pubmed]
  8. A single-blind comparison of bromperidol and sulpiride in hospitalized schizophrenics. Yamagami, S., Hirayama, E., Mui, K., Okuno, M., Kioka, T., Soma, T., Ohno, K. Acta psychiatrica Belgica. (1993) [Pubmed]
  9. The -141C Ins/Del polymorphism in the dopamine D2 receptor gene promoter region is associated with anxiolytic and antidepressive effects during treatment with dopamine antagonists in schizophrenic patients. Suzuki, A., Kondo, T., Mihara, K., Yasui-Furukori, N., Ishida, M., Furukori, H., Kaneko, S., Inoue, Y., Otani, K. Pharmacogenetics (2001) [Pubmed]
  10. Synthesis of high specific activity [75Br]- and [77Br]bromperidol and tissue distribution studies in the rat. Moerlein, S.M., Stöcklin, G.L. J. Med. Chem. (1985) [Pubmed]
  11. Effects of itraconazole on the steady-state plasma concentrations of bromperidol and reduced bromperidol in schizophrenic patients. Furukori, H., Kondo, T., Yasui, N., Otani, K., Tokinaga, N., Nagashima, U., Kaneko, S., Inoue, Y. Psychopharmacology (Berl.) (1999) [Pubmed]
  12. Comparison of prolactin concentrations between haloperidol and bromperidol treatments in schizophrenic patients. Yasui-Furukori, N., Kondo, T., Suzuki, A., Mihara, K., Kaneko, S., Otani, K. Prog. Neuropsychopharmacol. Biol. Psychiatry (2002) [Pubmed]
  13. Biotransformation of bromperidol in rat, dog, and man. Wong, F.A., Bateman, C.P., Shaw, C.J., Patrick, J.E. Drug Metab. Dispos. (1983) [Pubmed]
  14. Role of CYP3A in bromperidol metabolism in rat in vitro and in vivo. Watanabe, M., Tateishi, T., Tanaka, M., Kumai, T., Kobayashi, S. Xenobiotica (1999) [Pubmed]
  15. Association between multidrug resistance 1 (MDR1) gene polymorphisms and therapeutic response to bromperidol in schizophrenic patients: a preliminary study. Yasui-Furukori, N., Saito, M., Nakagami, T., Kaneda, A., Tateishi, T., Kaneko, S. Prog. Neuropsychopharmacol. Biol. Psychiatry (2006) [Pubmed]
  16. Influence of duration of untreated psychosis on auditory P300 in drug-naive and first-episode schizophrenia. Wang, J., Hirayasu, Y., Hokama, H., Tanaka, S., Kondo, T., Zhang, M., Xiao, Z. Psychiatry and clinical neurosciences. (2005) [Pubmed]
  17. Establishment of new cloned enzyme donor immunoassays (CEDIA) for haloperidol and bromperidol. Yasui-Furukori, N., Saito, M., Furukori, H., Inoue, Y., Someya, T., Kaneko, S., Tateishi, T. Therapeutic drug monitoring. (2004) [Pubmed]
  18. Double-blind study with two butyrophenone derivatives: bromperidol vs. haloperidol. Pöldinger, W., Bures, E., Haage, H. International pharmacopsychiatry. (1977) [Pubmed]
  19. Double-blind comparison of bromperidol and perphenazine. Woggon, B., Angst, J. International pharmacopsychiatry. (1978) [Pubmed]
  20. Neuroendocrine effects of bromperidol. Bianchi, A., Drago, F., Canonico, P.L., Guarcello, V., Carpiniello, B., Scapagnini, U. Acta psychiatrica Belgica. (1978) [Pubmed]
  21. Involvement of CYP3A4 in the metabolism of bromperidol in vitro. Sato, S., Someya, T., Shioiri, O., Koitabashi, T., Inoue, Y. Pharmacol. Toxicol. (2000) [Pubmed]
  22. Association between TaqI A dopamine D2 receptor polymorphism and therapeutic response to bromperidol: a preliminary report. Suzuki, A., Kondo, T., Mihara, K., Yasui-Furukori, N., Otani, K., Furukori, H., Kaneko, S., Inoue, Y. European archives of psychiatry and clinical neuroscience. (2001) [Pubmed]
  23. Sensitive Determination of 4-(4-Bromophenyl)-4-hydroxypiperidine, a Metabolite of Bromperidol, in Rat Plasma by HPLC with Fluorescence Detection after Pre-column Derivatization Using 4-Fluoro-7-nitro-2,1,3-benzoxadiazole. Higashi, Y., Nakamura, S., Fujii, Y. Biol. Pharm. Bull. (2006) [Pubmed]
  24. The characteristics of side-effects of bromperidol in schizophrenic patients. Yasui-Furukori, N., Kondo, T., Ishida, M., Tanaka, O., Mihara, K., Kaneko, S., Otani, K. Psychiatry and clinical neurosciences. (2002) [Pubmed]
  25. Bromperidol. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in psychoses. Benfield, P., Ward, A., Clark, B.G., Jue, S.G. Drugs (1988) [Pubmed]
  26. Bromperidol radioimmunoassay: human plasma levels. Tischio, J., Hetyei, N., Patrick, J. Journal of pharmaceutical sciences. (1984) [Pubmed]
  27. Determination of bromperidol in serum by automated column-switching high-performance liquid chromatography. Hikida, K., Inoue, Y., Miyazaki, T., Kojima, N., Ohkura, Y. J. Chromatogr. (1989) [Pubmed]
 
WikiGenes - Universities