The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Aiglonyl     N-[(1-ethylpyrrolidin-2- yl)methyl]-2...

Synonyms: Dogmatil, Dolmatil, Psicocen, Sulpitil, Arminol, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of sulpiride

 

Psychiatry related information on sulpiride

 

High impact information on sulpiride

  • In addition to E2, the proliferation of cancer cells, assessed by the measurement of thymidine labeling indices (TLIs), was demonstrated to be enhanced by ovine prolactin (oPRL) and Sulpiride and strongly slowed down by castration and 2-bromo-alpha-ergokryptin treatment, thus emphasizing the great importance of PRL in mammary cancer development [10].
  • This inhibition was blocked by D2 receptor blockade with metoclopramide or sulpiride, but not by D1 receptor blockade [11].
  • Inhibition of gastrin secretion by sulpiride treatment in duodenal ulcer patients [12].
  • Quinpirole increased DAT activity that was blocked by sulpiride and the protein kinase A selective inhibitor H-89 [13].
  • The effects of DA and amphetamine were attenuated by the D1 receptor antagonist SCH23390 but not by the D2 receptor antagonist sulpiride [14].
 

Chemical compound and disease context of sulpiride

 

Biological context of sulpiride

 

Anatomical context of sulpiride

  • In short, we have demonstrated enhanced functional and effective connectivity of human caudate nucleus following sulpiride treatment, which is compatible both with the anatomy of ascending dopaminergic projections and with electrophysiological studies indicating abnormal coherent oscillations of CST neurons in parkinsonian states [23].
  • The more salient effect of sulpiride was to increase functional connectivity between caudate and both thalamus and ventral midbrain [23].
  • The local application of (-)sulpiride, 200 ng side-1, into the nucleus accumbens produced a suppression of conditioned avoidance behavior in male rats, 10 and 90 min after injection [24].
  • The local application of (-)sulpiride into the posterior neostriatum, or into the prefrontal cortex, produced no statistically significant effect on conditioned avoidance behavior 10 or 90 min after injection [24].
  • These data demonstrate that administration of LHRH agonist can inhibit the hyperprolactinemic effect of sulpiride, suggesting a direct action of the analog on the pituitary gland to modulate PRL secretion [25].
 

Associations of sulpiride with other chemical compounds

 

Gene context of sulpiride

  • Conversely, an iv bolus of sulpiride (25 mg), a dopaminergic antagonist, given to four subjects after 240 min, brought about a marked increase in serum PRL values above the plateau level [30].
  • Although the DAR2 antagonist, sulpiride, reversed BIM-23A387-induced GH suppression, blockade of SSTR2 by the selective SSTR antagonist, BIM-23454, did not block BIM-23A387-suppressed GH secretion [31].
  • LIF (5 nM) also suppressed PRL levels in primary rat pituitary cultures by 70% (P < 0.005), and in rat MMQ pituitary tumor cells, and this effect was also reversed by sulpiride (200 micro M) [32].
  • The same dose of 5HTP resulted in a significant further increase in plasma PRL exceeding the levels elevated by sulpiride injections in NRS-treated rats [33].
  • Three compounds showed better activity against hCA VB over hCA II, among which were sulpiride and ethoxzolamide, which were 2 times more effective inhibitors of the mitochondrial over the cytosolic isozyme. hCA VB is a druggable target and some of its inhibitors may lead to the development of novel antiobesity therapies [34].
 

Analytical, diagnostic and therapeutic context of sulpiride

  • Self-administration could be attenuated by including equimolar concentrations of the dopaminergic D2-receptor antagonist sulpiride in the microinjection system [35].
  • Iontophoretic application of sulpiride, a selective D2 antagonist, onto the HIPP-ACC terminals attenuated the increased terminal excitability of these neurons produced by conditioning VTA stimulation, while intraperitoneal injection of SCH23390, a selective D1 antagonist, failed to attenuate this effect [36].
  • Results indicate that sulpiride has comparable effects on power law parameters estimated from SEP and fMRI, but fMRI has superior sensitivity to detect drug effects on somatosensory cortical recruitment by graded stimulation [19].
  • We have used sulpiride- and oestrogen-induced lactotroph hyperplasia within the rat AP gland as an in vivo animal model [37].
  • The concentration of DA released during the second pulse of a train was 58% of that released by the first pulse, an effect that is partially blocked by the addition of 2 microM sulpiride, a D2 antagonist, to the perfusion buffer [38].

References

  1. Treatment of duodenal ulcer with antacid and sulpiride. A double-blind controlled study. Lam, S.K., Lam, K.C., Lai, C.L., Yeung, C.K., Yam, L.Y., Wong, W.S. Gastroenterology (1979) [Pubmed]
  2. Tiapride and sulpiride in Parkinson's disease. Lees, A.J., Lander, C.M., Stern, G.M. Lancet (1978) [Pubmed]
  3. Antipsychotic drug-induced obesity in rats: correlation between leptin, insulin and body weight during sulpiride treatment. Lacruz, A., Baptista, T., de Mendoza, S., Mendoza-Guillén, J.M., Hernández, L. Mol. Psychiatry (2000) [Pubmed]
  4. Failure of maintained hyperprolactinemia to improve lactational performance in late puerperium. Barguño, J.M., del Pozo, E., Cruz, M., Figueras, J. J. Clin. Endocrinol. Metab. (1988) [Pubmed]
  5. Dopamine D2 mechanisms in canine narcolepsy. Nishino, S., Arrigoni, J., Valtier, D., Miller, J.D., Guilleminault, C., Dement, W.C., Mignot, E. J. Neurosci. (1991) [Pubmed]
  6. D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. Seamans, J.K., Floresco, S.B., Phillips, A.G. J. Neurosci. (1998) [Pubmed]
  7. Prolactin response to sulpiride before and after sleep deprivation in depression. Ebert, D., Kaschka, W., Stegbauer, P., Schrell, U. Biol. Psychiatry (1993) [Pubmed]
  8. Sulpiride, a D2/D3 blocker, reduces cataplexy but not REM sleep in canine narcolepsy. Okura, M., Riehl, J., Mignot, E., Nishino, S. Neuropsychopharmacology (2000) [Pubmed]
  9. Neuroleptics in the short-term treatment of anorexia nervosa. A double-blind placebo-controlled study with sulpiride. Vandereycken, W. The British journal of psychiatry : the journal of mental science. (1984) [Pubmed]
  10. Effect of prolactin and estradiol on cell proliferation in the uterus and the MXT mouse mammary neoplasm. Kiss, R., de Launoit, Y., L'Hermite-Balériaux, M., L'Hermite, M., Paridaens, R.J., Danguy, A.J., Pasteels, J.L. J. Natl. Cancer Inst. (1987) [Pubmed]
  11. Direct effects of catecholamines, thyrotropin-releasing hormone, and somatostatin on growth hormone and prolactin secretion from adenomatous and nonadenomatous human pituitary cells in culture. Ishibashi, M., Yamaji, T. J. Clin. Invest. (1984) [Pubmed]
  12. Inhibition of gastrin secretion by sulpiride treatment in duodenal ulcer patients. Caldara, R., Romussi, M., Ferrari, C. Gastroenterology (1978) [Pubmed]
  13. Protein kinase A activity may kinetically upregulate the striatal transporter for dopamine. Batchelor, M., Schenk, J.O. J. Neurosci. (1998) [Pubmed]
  14. Psychostimulants depress excitatory synaptic transmission in the nucleus accumbens via presynaptic D1-like dopamine receptors. Nicola, S.M., Kombian, S.B., Malenka, R.C. J. Neurosci. (1996) [Pubmed]
  15. Deduction of duodenal ulcer recurrence by healing with cimetidine plus sulpiride. Tatsuta, M., Iishi, H., Okuda, S. Gut (1986) [Pubmed]
  16. Alteration of feedback mechanism of estrogen on gonadotropin by sulpiride-induced hyperprolactinemia. L'Hermite, M., Delogne-Desnoeck, J., Michaux-Duchene, A., Robyn, C. J. Clin. Endocrinol. Metab. (1978) [Pubmed]
  17. Clinical and endocrinological analyses of patients with galactorrhea and menstrual disorders due to sulpiride or metoclopramide. Aono, T., Shioji, T., Kinugasa, T., Onishi, T., Kurachi, K. J. Clin. Endocrinol. Metab. (1978) [Pubmed]
  18. Effect of sulpiride-induced hyperprolactinemia on serum testosterone response to HCG in normal men. Ambrosi, B., Travaglini, P., Beck-Peccoz, P., Bara, R., Elli, R., Paracchi, A., Faglia, G. J. Clin. Endocrinol. Metab. (1976) [Pubmed]
  19. Dopaminergic effects on electrophysiological and functional MRI measures of human cortical stimulus-response power laws. Arthurs, O.J., Stephenson, C.M., Rice, K., Lupson, V.C., Spiegelhalter, D.J., Boniface, S.J., Bullmore, E.T. Neuroimage (2004) [Pubmed]
  20. Augmentation of puerperal lactation by oral administration of sulpiride. Aono, T., Shioji, T., Aki, T., Hirota, K., Nomura, A., Kurachi, K. J. Clin. Endocrinol. Metab. (1979) [Pubmed]
  21. Chronic administration of levosulpiride and glycemic control in IDDM patients with gastroparesis. Melga, P., Mansi, C., Ciuchi, E., Giusti, R., Sciaba, L., Prando, R. Diabetes Care (1997) [Pubmed]
  22. D2, D3, and D4 dopamine receptors couple to G protein-regulated potassium channels in Xenopus oocytes. Werner, P., Hussy, N., Buell, G., Jones, K.A., North, R.A. Mol. Pharmacol. (1996) [Pubmed]
  23. Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system. Honey, G.D., Suckling, J., Zelaya, F., Long, C., Routledge, C., Jackson, S., Ng, V., Fletcher, P.C., Williams, S.C., Brown, J., Bullmore, E.T. Brain (2003) [Pubmed]
  24. Suppression of conditioned avoidance behavior by the local application of (-)sulpiride into the ventral, but not the dorsal, striatum of the rat. Wadenberg, M.L., Ericson, E., Magnusson, O., Ahlenius, S. Biol. Psychiatry (1990) [Pubmed]
  25. D-Trp6-luteinizing hormone-releasing hormone inhibits sulpiride-induced hyperprolactinemia in normal men. Rubio, M.A., Torres-Aleman, I., Calle, J.R., Cabranes, J.A., Schally, A.V., Charro, A.L. J. Clin. Endocrinol. Metab. (1987) [Pubmed]
  26. Does dopamine use several signal pathways to inhibit Na-Pi transport in OK cells? Baines, A.D., Drangova, R. J. Am. Soc. Nephrol. (1998) [Pubmed]
  27. Regulated, adenovirus-mediated delivery of tyrosine hydroxylase suppresses growth of estrogen-induced pituitary prolactinomas. Williams, J.C., Stone, D., Smith-Arica, J.R., Morris, I.D., Lowenstein, P.R., Castro, M.G. Mol. Ther. (2001) [Pubmed]
  28. Cytochrome P4502D4 in the brain: specific neuronal regulation by clozapine and toluene. Hedlund, E., Wyss, A., Kainu, T., Backlund, M., Köhler, C., Pelto-Huikko, M., Gustafsson, J.A., Warner, M. Mol. Pharmacol. (1996) [Pubmed]
  29. Prophylactic effects of neuroleptics in symptom-free schizophrenics: a comparative dose-response study of timiperone and sulpiride. Nishikawa, T., Tanaka, M., Tsuda, A., Koga, I., Uchida, Y. Biol. Psychiatry (1989) [Pubmed]
  30. Down-regulation of prolactin secretion in men during continuous thyrotropin-releasing hormone infusion: evidence for induction of pituitary desensitization by continuous TRH administration. Mongioì, A., Aliffi, A., Vicari, E., Coniglione, F., Scapagnini, U., D'Agata, R. J. Clin. Endocrinol. Metab. (1983) [Pubmed]
  31. Suppression of rat and human growth hormone and prolactin secretion by a novel somatostatin/dopaminergic chimeric ligand. Ren, S.G., Kim, S., Taylor, J., Dong, J., Moreau, J.P., Culler, M.D., Melmed, S. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  32. Leukemia inhibitory factor regulates prolactin secretion in prolactinoma and lactotroph cells. Ben-Shlomo, A., Miklovsky, I., Ren, S.G., Yong, W.H., Heaney, A.P., Culler, M.D., Melmed, S. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  33. Effect of passive immunization with antisera to vasoactive intestinal polypeptide and peptide histidine isoleucine amide on 5-hydroxy-L-tryptophan-induced prolactin release in rats. Kaji, H., Chihara, K., Abe, H., Kita, T., Kashio, Y., Okimura, Y., Fujita, T. Endocrinology (1985) [Pubmed]
  34. Carbonic anhydrase inhibitors. The mitochondrial isozyme VB as a new target for sulfonamide and sulfamate inhibitors. Nishimori, I., Vullo, D., Innocenti, A., Scozzafava, A., Mastrolorenzo, A., Supuran, C.T. J. Med. Chem. (2005) [Pubmed]
  35. Cortical dopaminergic involvement in cocaine reinforcement. Goeders, N.E., Smith, J.E. Science (1983) [Pubmed]
  36. Dopamine enhances terminal excitability of hippocampal-accumbens neurons via D2 receptor: role of dopamine in presynaptic inhibition. Yang, C.R., Mogenson, G.J. J. Neurosci. (1986) [Pubmed]
  37. Adenovirus-mediated herpes simplex virus type-1 thymidine kinase gene therapy suppresses oestrogen-induced pituitary prolactinomas. Windeatt, S., Southgate, T.D., Dewey, R.A., Bolognani, F., Perone, M.J., Larregina, A.T., Maleniak, T.C., Morris, I.D., Goya, R.G., Klatzmann, D., Löwenstein, P.R., Castro, M.G. J. Clin. Endocrinol. Metab. (2000) [Pubmed]
  38. Dynamic observation of dopamine autoreceptor effects in rat striatal slices. Kennedy, R.T., Jones, S.R., Wightman, R.M. J. Neurochem. (1992) [Pubmed]
 
WikiGenes - Universities