The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

S-Menastrol     ethyl(4S)-4-(3- hydroxyphenyl)-6-methyl-2...

Synonyms: AC1LGGBI, CHEMBL254432, CHEBI:44298, CHEBI:75384, CHEBI:518807, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of monastrol

  • Furthermore, HR22C16 along with its analogs, inhibit cell survival in both Taxol-sensitive and -resistant ovarian cancer cells with at least 15-fold greater efficacy than monastrol, the first generation Eg5 inhibitor [1].
  • Monastrol (1a) and the thio-derivatives 3a, 4a and 6a displayed relevant antiproliferative properties with 3,4-methylenedioxy derivative 6a being approximately more than 30 times more potent than monastrol (1a) against colon cancer (HT-29) cell line [2].
 

Psychiatry related information on monastrol

 

High impact information on monastrol

 

Biological context of monastrol

 

Anatomical context of monastrol

  • In HeLa cells, inhibition of KSP by small-molecule inhibitor monastrol resulted in mitotic arrest and rapid caspase activation [10].
  • Differential effects of monastrol in two human cell lines [11].
  • Here we studied the effects of monastrol, an allosteric HsEg5 inhibitor, on AGS and HT29 cell lines and compared them to those of taxol [11].
  • Monastrol retarded oocyte maturation by significantly (P < 0.05) decreasing germinal vesicle breakdown and increasing the frequencies of arrested metaphase I oocytes [12].
  • After 3 days, immature neurons treated with monastrol had longer dendrites but slightly shorter axons than control [13].
 

Gene context of monastrol

  • Experiments with monopolar spindles that are induced by the kinesin inhibitor Monastrol indicate that Plk1 is required for the assembly of spindles that are able to generate poleward pulling forces [14].
  • In contrast, sensitivity to clinically relevant drugs like taxol or monastrol that inhibit the generation of tension across kinetochores is not modulated by partial downregulation of MAD1, suggesting a functional bifurcation of spindle checkpoint dependent apoptotic pathways [15].
  • Monastrol-treated Eg5 also shows a decreased relative affinity for microtubules under equilibrium conditions [16].
  • Interaction of the mitotic kinesin Eg5 inhibitor monastrol with P-glycoprotein [17].
  • KIFC5A knockdown partly rescues the phenotype caused by inhibition of plus-end-directed motor Eg5 by monastrol on the mitotic spindle, indicating that it is involved in the balance of forces determining bipolar spindle assembly and integrity [18].
 

Analytical, diagnostic and therapeutic context of monastrol

  • Stopped-flow fluorometry indicates that monastrol inhibits ADP release by forming an Eg5-ADP-monastrol ternary complex [19].
  • This first direct dissection of inhibitor-protein interactions, using these methods, demonstrates a clear disparity in the structural consequences of monastrol in the presence of ADP versus ATP [20].
  • Large-scale resolution of racemic monastrol has been carried out by normal-phase mode HPLC on an amylose-based chiral stationary phase [21].
  • Here, we used time-lapse video microscopy and biochemical analysis to study the effect of spindle checkpoint abrogation on the response of HeLa cells to monastrol, a selective Eg5 inhibitor [22].

References

  1. Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells. Marcus, A.I., Peters, U., Thomas, S.L., Garrett, S., Zelnak, A., Kapoor, T.M., Giannakakou, P. J. Biol. Chem. (2005) [Pubmed]
  2. Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: Monastrol, oxo-monastrol and oxygenated analogues. Russowsky, D., Canto, R.F., Sanches, S.A., D'Oca, M.G., de Fátima, A., Pilli, R.A., Kohn, L.K., Antônio, M.A., de Carvalho, J.E. Bioorg. Chem. (2006) [Pubmed]
  3. Eg5 is static in bipolar spindles relative to tubulin: evidence for a static spindle matrix. Kapoor, T.M., Mitchison, T.J. J. Cell Biol. (2001) [Pubmed]
  4. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Mayer, T.U., Kapoor, T.M., Haggarty, S.J., King, R.W., Schreiber, S.L., Mitchison, T.J. Science (1999) [Pubmed]
  5. A structural model for monastrol inhibition of dimeric kinesin Eg5. Krzysiak, T.C., Wendt, T., Sproul, L.R., Tittmann, P., Gross, H., Gilbert, S.P., Hoenger, A. EMBO J. (2006) [Pubmed]
  6. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. Khodjakov, A., Copenagle, L., Gordon, M.B., Compton, D.A., Kapoor, T.M. J. Cell Biol. (2003) [Pubmed]
  7. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. Kapoor, T.M., Mayer, T.U., Coughlin, M.L., Mitchison, T.J. J. Cell Biol. (2000) [Pubmed]
  8. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. Hauf, S., Cole, R.W., LaTerra, S., Zimmer, C., Schnapp, G., Walter, R., Heckel, A., van Meel, J., Rieder, C.L., Peters, J.M. J. Cell Biol. (2003) [Pubmed]
  9. Structure of Human Eg5 in Complex with a New Monastrol-based Inhibitor Bound in the R Configuration. Garcia-Saez, I., Debonis, S., Lopez, R., Trucco, F., Rousseau, B., Thuéry, P., Kozielski, F. J. Biol. Chem. (2007) [Pubmed]
  10. Potentiation of Kinesin spindle protein inhibitor-induced cell death by modulation of mitochondrial and death receptor apoptotic pathways. Vijapurkar, U., Wang, W., Herbst, R. Cancer Res. (2007) [Pubmed]
  11. Differential effects of monastrol in two human cell lines. Leizerman, I., Avunie-Masala, R., Elkabets, M., Fich, A., Gheber, L. Cell. Mol. Life Sci. (2004) [Pubmed]
  12. Transient exposure to the Eg5 kinesin inhibitor monastrol leads to syntelic orientation of chromosomes and aneuploidy in mouse oocytes. Mailhes, J.B., Mastromatteo, C., Fuseler, J.W. Mutat. Res. (2004) [Pubmed]
  13. Monastrol, a selective inhibitor of the mitotic kinesin Eg5, induces a distinctive growth profile of dendrites and axons in primary cortical neuron cultures. Yoon, S.Y., Choi, J.E., Huh, J.W., Hwang, O., Lee, H.S., Hong, H.N., Kim, D. Cell Motil. Cytoskeleton (2005) [Pubmed]
  14. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Sumara, I., Giménez-Abián, J.F., Gerlich, D., Hirota, T., Kraft, C., de la Torre, C., Ellenberg, J., Peters, J.M. Curr. Biol. (2004) [Pubmed]
  15. Partial downregulation of MAD1 causes spindle checkpoint inactivation and aneuploidy, but does not confer resistance towards taxol. Kienitz, A., Vogel, C., Morales, I., Müller, R., Bastians, H. Oncogene (2005) [Pubmed]
  16. Monastrol inhibition of the mitotic kinesin Eg5. Cochran, J.C., Gatial, J.E., Kapoor, T.M., Gilbert, S.P. J. Biol. Chem. (2005) [Pubmed]
  17. Interaction of the mitotic kinesin Eg5 inhibitor monastrol with P-glycoprotein. Peters, T., Lindenmaier, H., Haefeli, W.E., Weiss, J. Naunyn Schmiedebergs Arch. Pharmacol. (2006) [Pubmed]
  18. Motor protein KIFC5A interacts with Nubp1 and Nubp2, and is implicated in the regulation of centrosome duplication. Christodoulou, A., Lederer, C.W., Surrey, T., Vernos, I., Santama, N. J. Cell. Sci. (2006) [Pubmed]
  19. Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. DeBonis, S., Simorre, J.P., Crevel, I., Lebeau, L., Skoufias, D.A., Blangy, A., Ebel, C., Gans, P., Cross, R., Hackney, D.D., Wade, R.H., Kozielski, F. Biochemistry (2003) [Pubmed]
  20. Disparity in allosteric interactions of monastrol with Eg5 in the presence of ADP and ATP: a difference FT-IR investigation. Wojcik, E.J., Dalrymple, N.A., Alford, S.R., Walker, R.A., Kim, S. Biochemistry (2004) [Pubmed]
  21. Combining synthetic and analytical strategies for preparative HPLC enantioseparation of monastrol racemic mixture. Cavazzini, A., Massi, A., Bergamaschi, G., Braga, S., Dondi, F., Dondoni, A. Biotechnol. Prog. (2004) [Pubmed]
  22. Induction of apoptosis by monastrol, an inhibitor of the mitotic kinesin Eg5, is independent of the spindle checkpoint. Chin, G.M., Herbst, R. Mol. Cancer Ther. (2006) [Pubmed]
 
WikiGenes - Universities