The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Oxane     oxane

Synonyms: Oxacyclohexane, PubChem9509, AC1LAZGD, SureCN13487, HSDB 126, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of tetrahydropyran

  • The formation of the tetrahydropyran is more likely with an amino function of low nucleophilicity, whereas dehydration to an imine leading to a dihydropyridine is favored with an amino function of higher nucleophilicity [1].
  • In peripheral models of inflammation and hyperalgesia, tetrahydropyran derivative significantly reduced nociceptive effect induced by acetic acid or formalin in mice [2].
  • Using a simplified structure (2-(tetrahydropyran-2-yloxy) tetrahydropyran) as a model we have calculated the energy and 13C magnetic shielding parameters as a function of the two glycosidic torsion angles [3].

High impact information on tetrahydropyran


Biological context of tetrahydropyran


Anatomical context of tetrahydropyran

  • Studies conducted with microsomes from genetically engineered human cell lines expressing individual cytochrome P450s indicated that the isozyme responsible for the metabolism at the tetrahydropyran ring, was P4503A4 [10].

Associations of tetrahydropyran with other chemical compounds

  • Reductive cyclizations of hydroxysulfinyl ketones: enantioselective access to tetrahydropyran and tetrahydrofuran derivatives [11].
  • The stereoselective synthesis of methyl monate C 2 is described using as a key step an ene-intramolecular modified Sakurai cyclization (IMSC) reaction to prepare tetrahydropyran 5 [12].
  • [structure: see text] The ABC tristetrahydropyran substructure 1 of the natural products thyrsiferol (2) and venustatriol (3) has been synthesized in 14 steps from farnesyl acetate, with effective control of all aspects of regio- and stereoselectivity in the formation of each tetrahydropyran ring [13].
  • A tetrahydropyran-based inhibitor (2) of mammalian ribonucleotide reductase (mRR) has been designed and synthesized based on the heptapeptide, N-AcFTLDADF (1), corresponding to the C-terminus of the R2 subunit of mRR [14].
  • A tetrahydropyran ring-containing fatty acid-combined taurine (tetrathermoyltaurine) was found in the taurolipid fraction of Tetrahymena thermophila [15].

Gene context of tetrahydropyran

  • Specific tetrahydropyrane analogues modeled on PheArgTrp as a truncated version of the melanocortin receptor message sequence, showed activity at the melanocortin receptors MC4R and MC1R [16].
  • The substitution of an acetyl or an ethoxycarbonyl group for the amine N-ethoxycarbonyl-7-oxostaurosporine moiety on the tetrahydropyran ring of staurosporine decreased inhibition of both protein kinases, but increased selectivity for C-kinase by further modification of the lactam moiety to the imide (NA-382) [17].

Analytical, diagnostic and therapeutic context of tetrahydropyran

  • The first total synthesis of the reported structure of the sponge metabolite clavosolide A is described using a Prins cyclisation to assemble the tetrahydropyran core followed by manipulation of the side-chain, dimerisation and finally glycosidation [18].


  1. 2,6-diarylaminotetrahydropyrans from reactions of glutaraldehyde with anilines: models for biomolecule cross-linking. Henderson, A.P., Bleasdale, C., Clegg, W., Golding, B.T. Chem. Res. Toxicol. (2004) [Pubmed]
  2. Antinociceptive action of (+/-)-cis-(6-ethyl-tetrahydropyran-2-yl)-formic acid in mice. Marinho, B.G., Miranda, L.S., Gomes, N.M., Matheus, M.E., Leit??o, S.G., Vasconcellos, M.L., Fernandes, P.D. Eur. J. Pharmacol. (2006) [Pubmed]
  3. Solid-state 13C NMR investigations of the glycosidic linkage in alpha-alpha' trehalose. Zhang, P., Klymachyov, A.N., Brown, S., Ellington, J.G., Grandinetti, P.J. Solid state nuclear magnetic resonance. (1998) [Pubmed]
  4. Toward the synthesis of the carbacylic ansa antibiotic kendomycin. Mulzer, J., Pichlmair, S., Green, M.P., Marques, M.M., Martin, H.J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  5. Total syntheses of (+)-zampanolide and (+)-dactylolide exploiting a unified strategy. Smith, A.B., Safonov, I.G., Corbett, R.M. J. Am. Chem. Soc. (2002) [Pubmed]
  6. Intercalation of cyclic ethers into vanadyl phosphate. Zima, V., Melánová, K., Benes, L., Capková, P., Trchová, M., Matejka, P. Chemistry (Weinheim an der Bergstrasse, Germany) (2002) [Pubmed]
  7. Solvolysis of a tetrahydropyranyl mesylate: mechanistic implications for the prins cyclization, 2-oxonia-cope rearrangement, and grob fragmentation. Jasti, R., Rychnovsky, S.D. Org. Lett. (2006) [Pubmed]
  8. Stereoselective synthesis of the tetrahydropyran core of polycarvernoside A. Barry, C.S., Bushby, N., Harding, J.R., Willis, C.L. Org. Lett. (2005) [Pubmed]
  9. Solvent-dependent dynamic kinetic asymmetric transformation/kinetic resolution in molybdenum-catalyzed asymmetric allylic alkylations. Hughes, D.L., Palucki, M., Yasuda, N., Reamer, R.A., Reider, P.J. J. Org. Chem. (2002) [Pubmed]
  10. In vitro and in vivo biotransformations of the naphthalenic lignan lactone 5-lipoxygenase inhibitor, L-702,539. Chauret, N., Li, C., Ducharme, Y., Trimble, L.A., Yergey, J.A., Ramachandran, C., Nicoll-Griffith, D.A. Drug Metab. Dispos. (1995) [Pubmed]
  11. Reductive cyclizations of hydroxysulfinyl ketones: enantioselective access to tetrahydropyran and tetrahydrofuran derivatives. Carreño, M.C., Des Mazery, R., Urbano, A., Colobert, F., Solladié, G. J. Org. Chem. (2003) [Pubmed]
  12. Stereoselective synthesis of methyl monate C. Innis, L., Plancher, J.M., Mark??, I.E. Org. Lett. (2006) [Pubmed]
  13. Concise, regioselective synthesis of the ABC tristetrahydropyran of thyrsiferol and venustatriol. McDonald, F.E., Wei, X. Org. Lett. (2002) [Pubmed]
  14. Design and synthesis of a tetrahydropyran-based inhibitor of mammalian ribonucleotide reductase. Smith, A.B., Sasho, S., Barwis, B.A., Sprengeler, P., Barbosa, J., Hirschmann, R., Cooperman, B.S. Bioorg. Med. Chem. Lett. (1998) [Pubmed]
  15. Tetrahydropyran ring-containing fatty acid-combined taurine (tetrathermoyltaurine) in the taurolipid fraction of Tetrahymena thermophila. Kaya, K., Sano, T., Shiraishi, F. Biochim. Biophys. Acta (1992) [Pubmed]
  16. Novel tetrahydropyran-based peptidomimetics from a bioisosteric transformation of a tripeptide. Evidence of their activity at melanocortin receptors. Mazur, A.W., Kulesza, A., Mishra, R.K., Cross-Doersen, D., Russell, A.F., Ebetino, F.H. Bioorg. Med. Chem. (2003) [Pubmed]
  17. Effect of staurosporine derivatives on protein kinase activity and vinblastine accumulation in mouse leukaemia P388/ADR cells. Miyamoto, K., Inoko, K., Ikeda, K., Wakusawa, S., Kajita, S., Hasegawa, T., Takagi, K., Koyama, M. J. Pharm. Pharmacol. (1993) [Pubmed]
  18. Total synthesis of a diastereomer of the marine natural product clavosolide A. Barry, C.S., Bushby, N., Charmant, J.P., Elsworth, J.D., Harding, J.R., Willis, C.L. Chem. Commun. (Camb.) (2005) [Pubmed]
WikiGenes - Universities