The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Coronatine     (1S,2S)-1-[[(3aS,6R,7aS)-6- ethyl-1-oxo-2,3...

Synonyms: KST-1A6847, AC1L3MKP, AC1Q5QHM, AR-1A1516, C16790, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Coronatine

 

High impact information on Coronatine

  • The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides [4].
  • COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence [5].
  • This was correlated with increased larval performance on the coronatine insensitive1 glabrous1 (coi1-1 gl1) mutant [6].
  • JIN1 encodes AtMYC2, a nuclear-localized basic helix-loop-helix-leucine zipper transcription factor, whose expression is rapidly upregulated by JA, in a CORONATINE INSENSITIVE1-dependent manner [7].
  • In addition, the purified phytotoxin coronatine, a known virulence factor of P. syringae, suppresses the flagellin-induced NHO1 transcription [8].
 

Chemical compound and disease context of Coronatine

 

Biological context of Coronatine

  • Coronatine-triggered and spontaneous lesion spreading in acd2 plants also requires protein translation, indicating that cell death occurs by an active process [13].
  • The amino acid sequence shared 37% identity with a function-unknown gene whose mRNA is inducible by coronatine and methyl jasmonate (MeJA) in Arabidopsis thaliana (AtCLH1) [14].
  • However, little is known about the interplay between the host gene expression changes associated with basal defenses and the virulence activities of the TTSS and COR during infection [2].
  • 2. This plasmid was introduced into P. syringae pv. syringae PS61, which does not produce coronatine [15].
  • Biological activity critically depended upon the structure of coronatine, and slight modifications, such as methylation of the carboxyl moiety or reduction of the carbonyl group, rendered the molecules almost inactive [9].
 

Associations of Coronatine with other chemical compounds

 

Gene context of Coronatine

  • These results suggest that P. syringae type III effectors and coronatine act by augmenting a COI1-dependent pathway to promote parasitism [1].
  • Soluble recombinant CORI1 was purified and shown to possess chlorophyllase (Chlase) activity in vitro [20].
  • Given that tvrR mutant strains are not defective for type III secretion or COR production, tvrR appears to be a novel virulence factor required for a previously unexplored process that is necessary for pathogenesis [21].
  • Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine [22].
  • Analyses of P. syringae pv. tomato DC3000 mutants indicated that both type III secretion system and the phytotoxin coronatine are required for RAP2.6 induction [1].
 

Analytical, diagnostic and therapeutic context of Coronatine

  • Sequence analysis of 79 fusions revealed several known and potential virulence genes, including hrp/hrc, avr and coronatine biosynthetic genes [23].
  • The primer set amplified diagnostic 0.65-kb PCR products from genomic DNAs of five different coronatine-producing pathovars of P. syringae [24].
  • At nanomolar to micromolar concentrations, coronatine induced the accumulation of defense-related secondary metabolites in several plant cell cultures, induced transcript accumulation of the elicitor-responsive gene encoding the berberine bridge enzyme of Eschscholtzia californica, as well as the coiling response of Bryonia dioica tendrils [9].
  • A bioassay for coronatine suggested that PS61(pPT23A) transconjugants were able to make this phytotoxin [15].
  • The effect of each mutation on coronatine synthesis was determined by analyzing the organic acids produced by the mutants by reverse-phase high-performance liquid chromatography [25].

References

  1. Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. He, P., Chintamanani, S., Chen, Z., Zhu, L., Kunkel, B.N., Alfano, J.R., Tang, X., Zhou, J.M. Plant J. (2004) [Pubmed]
  2. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Thilmony, R., Underwood, W., He, S.Y. Plant J. (2006) [Pubmed]
  3. The physiological development of the chlorotic lesion induced by coronatine. Harzallah, D., Dehbi, F., Larous, L. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen) (2001) [Pubmed]
  4. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Bender, C.L., Alarcón-Chaidez, F., Gross, D.C. Microbiol. Mol. Biol. Rev. (1999) [Pubmed]
  5. COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence. Xiao, S., Dai, L., Liu, F., Wang, Z., Peng, W., Xie, D. Plant Cell (2004) [Pubmed]
  6. A conserved transcript pattern in response to a specialist and a generalist herbivore. Reymond, P., Bodenhausen, N., Van Poecke, R.M., Krishnamurthy, V., Dicke, M., Farmer, E.E. Plant Cell (2004) [Pubmed]
  7. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Lorenzo, O., Chico, J.M., Sánchez-Serrano, J.J., Solano, R. Plant Cell (2004) [Pubmed]
  8. Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Li, X., Lin, H., Zhang, W., Zou, Y., Zhang, J., Tang, X., Zhou, J.M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  9. The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. Weiler, E.W., Kutchan, T.M., Gorba, T., Brodschelm, W., Niesel, U., Bublitz, F. FEBS Lett. (1994) [Pubmed]
  10. Analysis of genes involved in biosynthesis of coronafacic acid, the polyketide component of the phytotoxin coronatine. Rangaswamy, V., Mitchell, R., Ullrich, M., Bender, C. J. Bacteriol. (1998) [Pubmed]
  11. The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases. Ullrich, M., Bender, C.L. J. Bacteriol. (1994) [Pubmed]
  12. Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens. Bent, A.F., Innes, R.W., Ecker, J.R., Staskawicz, B.J. Mol. Plant Microbe Interact. (1992) [Pubmed]
  13. The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Mach, J.M., Castillo, A.R., Hoogstraten, R., Greenberg, J.T. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  14. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Tsuchiya, T., Ohta, H., Okawa, K., Iwamatsu, A., Shimada, H., Masuda, T., Takamiya, K. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  15. Plasmid-mediated production of the phytotoxin coronatine in Pseudomonas syringae pv. tomato. Bender, C.L., Malvick, D.K., Mitchell, R.E. J. Bacteriol. (1989) [Pubmed]
  16. Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the Coi1 mutant of Arabidopsis. Benedetti, C.E., Costa, C.L., Turcinelli, S.R., Arruda, P. Plant Physiol. (1998) [Pubmed]
  17. Characterization and transcriptional analysis of the gene cluster for coronafacic acid, the polyketide component of the phytotoxin coronatine. Liyanage, H., Palmer, D.A., Ullrich, M., Bender, C.L. Appl. Environ. Microbiol. (1995) [Pubmed]
  18. Virulence of the phytopathogen Pseudomonas syringae pv. maculicola is rpoN dependent. Hendrickson, E.L., Guevera, P., Peñaloza-Vàzquez, A., Shao, J., Bender, C., Ausubel, F.M. J. Bacteriol. (2000) [Pubmed]
  19. Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. Holländer-Czytko, H., Grabowski, J., Sandorf, I., Weckermann, K., Weiler, E.W. J. Plant Physiol. (2005) [Pubmed]
  20. Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Benedetti, C.E., Arruda, P. Plant Physiol. (2002) [Pubmed]
  21. Novel virulence gene of Pseudomonas syringae pv. tomato strain DC3000. Preiter, K., Brooks, D.M., Penaloza-Vazquez, A., Sreedharan, A., Bender, C.L., Kunkel, B.N. J. Bacteriol. (2005) [Pubmed]
  22. Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. Chen, H., McCaig, B.C., Melotto, M., He, S.Y., Howe, G.A. J. Biol. Chem. (2004) [Pubmed]
  23. Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Boch, J., Joardar, V., Gao, L., Robertson, T.L., Lim, M., Kunkel, B.N. Mol. Microbiol. (2002) [Pubmed]
  24. Identification and relatedness of coronatine-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products. Bereswill, S., Bugert, P., Völksch, B., Ullrich, M., Bender, C.L., Geider, K. Appl. Environ. Microbiol. (1994) [Pubmed]
  25. Physical and functional characterization of the gene cluster encoding the polyketide phytotoxin coronatine in Pseudomonas syringae pv. glycinea. Young, S.A., Park, S.K., Rodgers, C., Mitchell, R.E., Bender, C.L. J. Bacteriol. (1992) [Pubmed]
 
WikiGenes - Universities