The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

lysA  -  diaminopimelate decarboxylase

Escherichia coli CFT073

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of lysA

 

High impact information on lysA

 

Chemical compound and disease context of lysA

 

Biological context of lysA

  • Comparison of the deduced amino acid sequence of the lysA gene product revealed extensive similarity with the sequences of the functionally equivalent enzymes from Escherichia coli and Corynebacterium glutamicum [3].
  • Our results indicate an absolute requirement for the LysR product for its activation, LysR protein present in a limiting amount which can be titrated by a multicopy plasmid carrying its target site and a negative regulatory role for the LysA protein itself which decreases lysA-lacZ expression 30-fold [7].
  • The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA [11].
  • This indicates that the mechanism of transcriptional activation for the E. coli lysA gene is effective in the heterologous host [8].
  • The linear DNA contained 50 bp homologous sequence of upstream of lysA in one end and 50 bp of downstream of lysA in the other end [12].
 

Associations of lysA with chemical compounds

  • The mutation was located in the lysA gene and resulted in the substitution of the Ser at position 384 by Phe of the diaminopimelate decarboxylase (DAPDC), which catalyzes the conversion of meso-diaminopimelate to L-lysine [1].
  • Based on the comparison of the B. subtilis lysA sequence with a sequence of the DAP-decarboxylase gene cloned into pUB110 (Yamamoto et al., Nucleic Acids Res., 17, 10105 (1989], it was found that the lys gene in the plasmid was fused with the dnaN gene in its COOH-terminal region [13].
  • To elucidate further the regulation of L-lysine biosynthesis in M. methylotrophus, we cloned the genes encoding three other enzymes involved in this pathway, L-aspartate-beta-semialdehyde dehydrogenase, dihydrodipicolinate reductase (DDPR) and diaminopimelate decarboxylase, and examined their properties [14].
  • A diaminopimelate-requiring mutant, with limited ability to take up diaminopimelate, formed almost three times less diaminopimelate decarboxylase than did a diaminopimelate-requiring second-stage mutant that had an increased rate of transport of this amino acid [15].
  • Lysine plus diaminopimelate strongly repressed the lysine-sensitive aspartokinase (85%) without much affecting diaminopimelate decarboxylase formation, and pyridoxine repressed the decarboxylase without affecting aspartokinase [15].
 

Other interactions of lysA

 

Analytical, diagnostic and therapeutic context of lysA

References

  1. Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli. Bourot, S., Sire, O., Trautwetter, A., Touzé, T., Wu, L.F., Blanco, C., Bernard, T. J. Biol. Chem. (2000) [Pubmed]
  2. Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene. Marcel, T., Archer, J.A., Mengin-Lecreulx, D., Sinskey, A.J. Mol. Microbiol. (1990) [Pubmed]
  3. Pseudomonas aeruginosa diaminopimelate decarboxylase: evolutionary relationship with other amino acid decarboxylases. Martin, C., Cami, B., Yeh, P., Stragier, P., Parsot, C., Patte, J.C. Mol. Biol. Evol. (1988) [Pubmed]
  4. Cloning, expression and sequence analysis of an endolysin-encoding gene of Lactobacillus bulgaricus bacteriophage mv1. Boizet, B., Lahbib-Mansais, Y., Dupont, L., Ritzenthaler, P., Mata, M. Gene (1990) [Pubmed]
  5. Cloning of the lysA gene from Mycobacterium tuberculosis. Andersen, A.B., Hansen, E.B. Gene (1993) [Pubmed]
  6. Crystal structure of Mycobacterium tuberculosis diaminopimelate decarboxylase, an essential enzyme in bacterial lysine biosynthesis. Gokulan, K., Rupp, B., Pavelka, M.S., Jacobs, W.R., Sacchettini, J.C. J. Biol. Chem. (2003) [Pubmed]
  7. Regulatory pattern of the Escherichia coli lysA gene: expression of chromosomal lysA-lacZ fusions. Stragier, P., Borne, F., Richaud, F., Richaud, C., Patte, J.C. J. Bacteriol. (1983) [Pubmed]
  8. Heterologous expression and regulation of the lysA genes of Pseudomonas aeruginosa and Escherichia coli. Martin, C., Cami, B., Borne, F., Jeenes, D.J., Haas, D., Patte, J.C. Mol. Gen. Genet. (1986) [Pubmed]
  9. Physiological and geometrical conditions for cell division in Escherichia coli. Woldringh, C.L., Valkendurg, J.A., Pas, E., Taschner, P.E., Huls, P., Wientjes, F.B. Ann. Inst. Pasteur Microbiol. (1985) [Pubmed]
  10. Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. I. Identification of a lysR gene encoding an activator of the lysA gene. Stragier, P., Richaud, F., Borne, F., Patte, J.C. J. Mol. Biol. (1983) [Pubmed]
  11. Cloning and sequence analysis of the meso-diaminopimelate decarboxylase gene from Bacillus methanolicus MGA3 and comparison to other decarboxylase genes. Mills, D.A., Flickinger, M.C. Appl. Environ. Microbiol. (1993) [Pubmed]
  12. Generation of an Escherichia coli lysA targeted deletion mutant by double cross-over recombination for potential use in a bacterial growth-based lysine assay. Li, X., Ricke, S.C. Lett. Appl. Microbiol. (2003) [Pubmed]
  13. Molecular cloning and analysis of nucleotide sequence of the Bacillus subtilis lysA gene region using B. subtilis phage vectors and a multi-copy plasmid, pUB110. Yamamoto, J., Shimizu, M., Yamane, K. Agric. Biol. Chem. (1991) [Pubmed]
  14. L-Lysine biosynthetic pathway of Methylophilus methylotrophus and construction of an L-lysine producer. Tsujimoto, N., Gunji, Y., Ogawa-Miyata, Y., Shimaoka, M., Yasueda, H. J. Biotechnol. (2006) [Pubmed]
  15. The regulation of diaminopimelate decarboxylase activity in Escherichia coli strain w. White, P.J. J. Gen. Microbiol. (1976) [Pubmed]
  16. Enzymic assays for isomers of 2,6-diaminopimelic acid in walls of Bacillus cereus and Bacillus megaterium. Day, A., White, P.J. Biochem. J. (1977) [Pubmed]
  17. Crystallization of diaminopimelate decarboxylase from Escherichia coli, a stereospecific D-amino-acid decarboxylase. Momany, C., Levdikov, V., Blagova, L., Crews, K. Acta Crystallogr. D Biol. Crystallogr. (2002) [Pubmed]
 
WikiGenes - Universities