The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Acat1  -  acetyl-CoA acetyltransferase 1

Rattus norvegicus

Synonyms: Acetoacetyl-CoA thiolase, Acetyl-CoA acetyltransferase, mitochondrial
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Acat1

 

High impact information on Acat1

 

Biological context of Acat1

 

Anatomical context of Acat1

 

Associations of Acat1 with chemical compounds

 

Other interactions of Acat1

References

  1. Molecular cloning and nucleotide sequence of cDNA encoding the entire precursor of rat mitochondrial acetoacetyl-CoA thiolase. Fukao, T., Kamijo, K., Osumi, T., Fujiki, Y., Yamaguchi, S., Orii, T., Hashimoto, T. J. Biochem. (1989) [Pubmed]
  2. Pseudoketogenesis in the perfused rat heart. Fink, G., Desrochers, S., Des Rosiers, C., Garneau, M., David, F., Daloze, T., Landau, B.R., Brunengraber, H. J. Biol. Chem. (1988) [Pubmed]
  3. Mitochondrial metabolism of 3-mercaptopropionic acid. Chemical synthesis of 3-mercaptopropionyl coenzyme A and some of its S-acyl derivatives. Cuebas, D., Beckmann, J.D., Frerman, F.E., Schulz, H. J. Biol. Chem. (1985) [Pubmed]
  4. 4-Bromocrotonic acid, an effective inhibitor of fatty acid oxidation and ketone body degradation in rat heart mitochondria. On the rate-determining step of beta-oxidation and ketone body degradation in heart. Olowe, Y., Schulz, H. J. Biol. Chem. (1982) [Pubmed]
  5. Effect of phenylmethylsulfonyl fluoride on sterol biosynthesis in 10,000 x g supernatant fraction of rat liver homogenates. Raulston, D.L., Schroepfer, G.J. J. Biol. Chem. (1981) [Pubmed]
  6. Regulation of ketogenesis. Mitochondrial acetyl-CoA acetyltransferase from rat liver: initial-rate kinetics in the presence of the product CoASH reveal intermediary plateau regions. Huth, W., Menke, R. Eur. J. Biochem. (1982) [Pubmed]
  7. Cholesterol synthesis and related enzymes in rat liver during pregnancy. Leoni, S., Spagnuolo, S., Conti Devirgiliis, L., Mangiantini, M.T., Trentalance, A. Experientia (1984) [Pubmed]
  8. Synthesis of chloromethyl ketone derivatives of fatty acids. Their use as specific inhibitors of acetoacetyl-coenzyme A thiolase, cholesterol biosynthesis and fatty acid synthesis. Bloxham, D.P., Chalkley, R.A., Coghlin, S.J., Salam, W. Biochem. J. (1978) [Pubmed]
  9. Identification of the CoA-modified forms of mitochondrial acetyl-CoA acetyltransferase and of glutamate dehydrogenase as nearest-neighbour proteins. Schwerdt, G., Möller, U., Huth, W. Biochem. J. (1991) [Pubmed]
  10. Hormonal regulation of the mRNA encoding the ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in neonatal primary cultures of cortical astrocytes and meningeal fibroblasts. Cullingford, T.E., Bhakoo, K.K., Clark, J.B. J. Neurochem. (1998) [Pubmed]
  11. Changes in the activities of the enzymes of hepatic fatty acid oxidation during development of the rat. Foster, P.C., Bailey, E. Biochem. J. (1976) [Pubmed]
  12. Identification, purification and characterization of an acetoacetyl-CoA thiolase from rat liver peroxisomes. Antonenkov, V.D., Croes, K., Waelkens, E., Van Veldhoven, P.P., Mannaerts, G.P. Eur. J. Biochem. (2000) [Pubmed]
  13. Intracellular localization of the 3-hydroxy-3-methylglutaryl coenzme A cycle enzymes in liver. Separate cytoplasmic and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A generating systems for cholesterogenesis and ketogenesis. Clinkenbeard, K.D., Reed, W.D., Mooney, R.A., Lane, M.D. J. Biol. Chem. (1975) [Pubmed]
  14. Cycloheximide inhibits sterol biosynthesis in cell-free preparations of rat liver. Raulston, D.L., Miller, L.R., Schroepfer, G.J. J. Biol. Chem. (1980) [Pubmed]
  15. Selective inhibition of cholesterol synthesis by cell-free preparations of rat liver by using inhibitors of cytoplasmic acetoacetyl-coenzyme A thiolase. Bloxham, D.P. Biochem. J. (1975) [Pubmed]
  16. Turnover and transformation of mitochondrial acetyl-CoA acetyltransferase into CoA-modified forms. Schwerdt, G., Huth, W. Biochem. J. (1993) [Pubmed]
  17. Effect of phenylalanine metabolites on the activities of enzymes of ketone-body utilization in brain of suckling rats. Benavides, J., Gimenez, C., Valdivieso, F., Mayor, F. Biochem. J. (1976) [Pubmed]
  18. Stimulation of hepatic cholesterol biosynthesis by fatty acids. Effects of oleate on cytoplasmic acetoacetyl-CoA thiolase, acetoacetyl-CoA synthetase and hydroxymethylglutaryl-CoA synthase. Salam, W.H., Wilcox, H.G., Cagen, L.M., Heimberg, M. Biochem. J. (1989) [Pubmed]
  19. An explanation for ketogenesis by the intestine of the suckling rat: the presence of an active hydroxymethylglutaryl-coenzyme A pathway. Békési, A., Williamson, D.H. Biol. Neonate (1990) [Pubmed]
 
WikiGenes - Universities