The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ND075  -  transcriptional regulator

Pseudomonas putida ND6

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ND075

 

High impact information on ND075

  • Five of them encode enzymes that catabolize putrescine; one encodes a putrescine importer, and the other encodes a transcriptional regulator [5].
  • A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway [6].
  • This acyl-HSL-dependent autoinduction system is noteworthy because (i) it is regulated by a 'higher level' autoinducer system (responsive to 3-hydroxypalmitic acid methyl ester) via PhcA, a LysR-type transcriptional regulator and (ii) acyl-HSL production requires two additional unlinked loci [2].
  • The wilt-inducing phytopathogen Pseudomonas solanacearum produces several extracellular virulence factors, both polysaccharides (EPS I) and proteins (EXPs), which are independently regulated by a LysR-type transcriptional regulator, PhcA, and a histidine kinase sensor, VsrB [7].
  • Nucleotide sequence analysis of the pRSB111 accessory region revealed that it contains a new macrolide resistance module composed of the genes mphR(E), mph(E), and mrx(E), which putatively encode a transcriptional regulator, a macrolide phosphotransferase, and a transmembrane transport protein, respectively [8].
 

Biological context of ND075

 

Anatomical context of ND075

 

Associations of ND075 with chemical compounds

  • The nbzCDE genes, which are transcribed in the opposite direction of the nbzA gene, are coordinately regulated by both nitrobenzene and a positive transcriptional regulator that seems to be encoded on pNB2 [15].
  • Two other genes encoding the further catabolism of cyanuric acid, atzE and atzF, reside in a contiguous cluster adjacent to a potential LysR-type transcriptional regulator [16].
  • This is believed to be the first report that a sigma(54)-dependent transcriptional regulator induced under sulfate limitation is involved in sulfur assimilation [17].
  • In an arcA mutant devoid of the transcriptional regulator ArcA, glycerol was completely oxidized with nitrate as an electron acceptor, demonstrating derepression and function of the complete pathway [18].
  • Another two mutants had a defect in a gene homologous to pa2354 from P. aeruginosa PAO1, which encodes a putative transcriptional regulator, while the remaining mutant had a defect in cysM encoding O-acetylserine (thiol)-lyase B [19].

References

  1. BphS, a key transcriptional regulator of bph genes involved in polychlorinated biphenyl/biphenyl degradation in Pseudomonas sp. KKS102. Ohtsubo, Y., Delawary, M., Kimbara, K., Takagi, M., Ohta, A., Nagata, Y. J. Biol. Chem. (2001) [Pubmed]
  2. An RpoS (sigmaS) homologue regulates acylhomoserine lactone-dependent autoinduction in Ralstonia solanacearum. Flavier, A.B., Schell, M.A., Denny, T.P. Mol. Microbiol. (1998) [Pubmed]
  3. cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Noël, L., Thieme, F., Nennstiel, D., Bonas, U. Mol. Microbiol. (2001) [Pubmed]
  4. Resistance to Pseudomonas aeruginosa Chronic Lung Infection Requires Cystic Fibrosis Transmembrane Conductance Regulator-Modulated Interleukin-1 (IL-1) Release and Signaling through the IL-1 Receptor. Reiniger, N., Lee, M.M., Coleman, F.T., Ray, C., Golan, D.E., Pier, G.B. Infect. Immun. (2007) [Pubmed]
  5. A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. Kurihara, S., Oda, S., Kato, K., Kim, H.G., Koyanagi, T., Kumagai, H., Suzuki, H. J. Biol. Chem. (2005) [Pubmed]
  6. A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Canosa, I., Sánchez-Romero, J.M., Yuste, L., Rojo, F. Mol. Microbiol. (2000) [Pubmed]
  7. VsrA, a second two-component sensor regulating virulence genes of Pseudomonas solanacearum. Schell, M.A., Denny, T.P., Huang, J. Mol. Microbiol. (1994) [Pubmed]
  8. Novel Macrolide Resistance Module Carried by the IncP-1{beta} Resistance Plasmid pRSB111, Isolated from a Wastewater Treatment Plant. Szczepanowski, R., Krahn, I., Bohn, N., Pühler, A., Schlüter, A. Antimicrob. Agents Chemother. (2007) [Pubmed]
  9. Regulation of pulmonary Pseudomonas aeruginosa infection by the transcriptional repressor Gfi1. Grassmé, H., Jin, J., Wilker, B., von Kürthy, G., Wick, W., Weller, M., Möröy, T., Gulbins, E. Cell. Microbiol. (2006) [Pubmed]
  10. Transcriptional repression mediated by LysR-type regulator CatR bound at multiple binding sites. Chugani, S.A., Parsek, M.R., Chakrabarty, A.M. J. Bacteriol. (1998) [Pubmed]
  11. A complex network regulates expression of eps and other virulence genes of Pseudomonas solanacearum. Huang, J., Carney, B.F., Denny, T.P., Weissinger, A.K., Schell, M.A. J. Bacteriol. (1995) [Pubmed]
  12. Phenotype conversion in Pseudomonas solanacearum due to spontaneous inactivation of PhcA, a putative LysR transcriptional regulator. Brumbley, S.M., Carney, B.F., Denny, T.P. J. Bacteriol. (1993) [Pubmed]
  13. Transcriptional activation of quinoline degradation operons of Pseudomonas putida 86 by the AraC/XylS-type regulator OxoS and cross-regulation of the PqorM promoter by XylS. Carl, B., Fetzner, S. Appl. Environ. Microbiol. (2005) [Pubmed]
  14. The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile pseudomonas aeruginosa cystic fibrosis isolates. Tart, A.H., Blanks, M.J., Wozniak, D.J. J. Bacteriol. (2006) [Pubmed]
  15. Identification and characterization of the nitrobenzene catabolic plasmids pNB1 and pNB2 in Pseudomonas putida HS12. Park, H.S., Kim, H.S. J. Bacteriol. (2000) [Pubmed]
  16. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. Martinez, B., Tomkins, J., Wackett, L.P., Wing, R., Sadowsky, M.J. J. Bacteriol. (2001) [Pubmed]
  17. A CysB-regulated and sigma54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1. Endoh, T., Habe, H., Yoshida, T., Nojiri, H., Omori, T. Microbiology (Reading, Engl.) (2003) [Pubmed]
  18. Functional citric acid cycle in an arcA mutant of Escherichia coli during growth with nitrate under anoxic conditions. Prohl, C., Wackwitz, B., Vlad, D., Unden, G. Arch. Microbiol. (1998) [Pubmed]
  19. Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1. Endoh, T., Kasuga, K., Horinouchi, M., Yoshida, T., Habe, H., Nojiri, H., Omori, T. Appl. Microbiol. Biotechnol. (2003) [Pubmed]
 
WikiGenes - Universities