The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Rods (Retina)

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rods (Retina)

 

High impact information on Rods (Retina)

 

Chemical compound and disease context of Rods (Retina)

 

Biological context of Rods (Retina)

 

Anatomical context of Rods (Retina)

 

Associations of Rods (Retina) with chemical compounds

  • Furthermore, in retinal rod photoreceptors the low cytoplasmic concentration of cyclic GMP means that channels exist primarily in partially liganded states, so it is important to determine how such channels behave [22].
  • Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors [23].
  • Rhodopsin, the visual pigment of retinal rod photoreceptor cells, is a membrane glycoprotein which consists of a single polypeptide chain (opsin) to which a chromophoric prosthetic group (II-cis-retinaldehyde) and two asparagine-linked oligosaccharide chains are covalently attached [24].
  • Taurine potentiates the production of rod photoreceptors, and this induction is inhibited by strychnine, an antagonist of glycine receptors, and bicuculline, an antagonist of GABA receptors [25].
  • Taurine, a multifunctional amino acid prevalent in developing nervous tissues, regulates the number of rod photoreceptors in developing postnatal rodent retina [26].
 

Gene context of Rods (Retina)

 

Analytical, diagnostic and therapeutic context of Rods (Retina)

References

  1. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Rao, V.R., Cohen, G.B., Oprian, D.D. Nature (1994) [Pubmed]
  2. Inhibition of the visual cycle in vivo by 13-cis retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy. Sieving, P.A., Chaudhry, P., Kondo, M., Provenzano, M., Wu, D., Carlson, T.J., Bush, R.A., Thompson, D.A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  3. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study. Zvyaga, T.A., Fahmy, K., Siebert, F., Sakmar, T.P. Biochemistry (1996) [Pubmed]
  4. Interaction between mGluR8 and calcium channels in photoreceptors is sensitive to pertussis toxin and occurs via G protein betagamma subunit signaling. Koulen, P., Liu, J., Nixon, E., Madry, C. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  5. Specificity of T and B cell responses to bovine rhodopsin in Lewis rats. Moticka, E.J., Adamus, G. Cell. Immunol. (1991) [Pubmed]
  6. Rb regulates proliferation and rod photoreceptor development in the mouse retina. Zhang, J., Gray, J., Wu, L., Leone, G., Rowan, S., Cepko, C.L., Zhu, X., Craft, C.M., Dyer, M.A. Nat. Genet. (2004) [Pubmed]
  7. Nrl is required for rod photoreceptor development. Mears, A.J., Kondo, M., Swain, P.K., Takada, Y., Bush, R.A., Saunders, T.L., Sieving, P.A., Swaroop, A. Nat. Genet. (2001) [Pubmed]
  8. Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Clarke, G., Goldberg, A.F., Vidgen, D., Collins, L., Ploder, L., Schwarz, L., Molday, L.L., Rossant, J., Szél, A., Molday, R.S., Birch, D.G., McInnes, R.R. Nat. Genet. (2000) [Pubmed]
  9. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Redmond, T.M., Yu, S., Lee, E., Bok, D., Hamasaki, D., Chen, N., Goletz, P., Ma, J.X., Crouch, R.K., Pfeifer, K. Nat. Genet. (1998) [Pubmed]
  10. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Humphries, M.M., Rancourt, D., Farrar, G.J., Kenna, P., Hazel, M., Bush, R.A., Sieving, P.A., Sheils, D.M., McNally, N., Creighton, P., Erven, A., Boros, A., Gulya, K., Capecchi, M.R., Humphries, P. Nat. Genet. (1997) [Pubmed]
  11. Adenoviral-mediated gene transfer to retinal explants during development and degeneration. Pang, J., Cheng, M., Stevenson, D., Trousdale, M.D., Dorey, C.K., Blanks, J.C. Exp. Eye Res. (2004) [Pubmed]
  12. Cyclic GMP is involved in the excitation of invertebrate photoreceptors. Johnson, E.C., Robinson, P.R., Lisman, J.E. Nature (1986) [Pubmed]
  13. A three-base-pair deletion in the peripherin-RDS gene in one form of retinitis pigmentosa. Farrar, G.J., Kenna, P., Jordan, S.A., Kumar-Singh, R., Humphries, M.M., Sharp, E.M., Sheils, D.M., Humphries, P. Nature (1991) [Pubmed]
  14. Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. Arikawa, K., Molday, L.L., Molday, R.S., Williams, D.S. J. Cell Biol. (1992) [Pubmed]
  15. Structural and functional rescue of murine rod photoreceptors by human rhodopsin transgene. McNally, N., Kenna, P., Humphries, M.M., Hobson, A.H., Khan, N.W., Bush, R.A., Sieving, P.A., Humphries, P., Farrar, G.J. Hum. Mol. Genet. (1999) [Pubmed]
  16. The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Peng, G.H., Ahmad, O., Ahmad, F., Liu, J., Chen, S. Hum. Mol. Genet. (2005) [Pubmed]
  17. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Deans, M.R., Volgyi, B., Goodenough, D.A., Bloomfield, S.A., Paul, D.L. Neuron (2002) [Pubmed]
  18. Progressive photoreceptor degeneration, outer segment dysplasia, and rhodopsin mislocalization in mice with targeted disruption of the retinitis pigmentosa-1 (Rp1) gene. Gao, J., Cheon, K., Nusinowitz, S., Liu, Q., Bei, D., Atkins, K., Azimi, A., Daiger, S.P., Farber, D.B., Heckenlively, J.R., Pierce, E.A., Sullivan, L.S., Zuo, J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  19. Irish setter dogs affected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase beta-subunit gene. Suber, M.L., Pittler, S.J., Qin, N., Wright, G.C., Holcombe, V., Lee, R.H., Craft, C.M., Lolley, R.N., Baehr, W., Hurwitz, R.L. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  20. Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Dryja, T.P., Finn, J.T., Peng, Y.W., McGee, T.L., Berson, E.L., Yau, K.W. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  21. Cell adhesion molecules regulating neurite growth from amacrine and rod photoreceptor cells. Kljavin, I.J., Lagenaur, C., Bixby, J.L., Reh, T.A. J. Neurosci. (1994) [Pubmed]
  22. Single cyclic nucleotide-gated channels locked in different ligand-bound states. Ruiz, M.L., Karpen, J.W. Nature (1997) [Pubmed]
  23. Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors. Körschen, H.G., Beyermann, M., Müller, F., Heck, M., Vantler, M., Koch, K.W., Kellner, R., Wolfrum, U., Bode, C., Hofmann, K.P., Kaupp, U.B. Nature (1999) [Pubmed]
  24. Photoreceptor-specific degeneration caused by tunicamycin. Fliesler, S.J., Rapp, L.M., Hollyfield, J.G. Nature (1984) [Pubmed]
  25. A role for ligand-gated ion channels in rod photoreceptor development. Young, T.L., Cepko, C.L. Neuron (2004) [Pubmed]
  26. Need rods? Get glycine receptors and taurine. Rentería, R.C., Johnson, J., Copenhagen, D.R. Neuron (2004) [Pubmed]
  27. A novel locus (RP24) for X-linked retinitis pigmentosa maps to Xq26-27. Gieser, L., Fujita, R., Göring, H.H., Ott, J., Hoffman, D.R., Cideciyan, A.V., Birch, D.G., Jacobson, S.G., Swaroop, A. Am. J. Hum. Genet. (1998) [Pubmed]
  28. The Leber congenital amaurosis gene product AIPL1 is localized exclusively in rod photoreceptors of the adult human retina. van der Spuy, J., Chapple, J.P., Clark, B.J., Luthert, P.J., Sethi, C.S., Cheetham, M.E. Hum. Mol. Genet. (2002) [Pubmed]
  29. Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors. Cheng, H., Khanna, H., Oh, E.C., Hicks, D., Mitton, K.P., Swaroop, A. Hum. Mol. Genet. (2004) [Pubmed]
  30. The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors. Roepman, R., Bernoud-Hubac, N., Schick, D.E., Maugeri, A., Berger, W., Ropers, H.H., Cremers, F.P., Ferreira, P.A. Hum. Mol. Genet. (2000) [Pubmed]
  31. Two alternatively spliced forms of the cGMP-gated channel alpha-subunit from cone photoreceptor are expressed in the chick pineal organ. Bönigk, W., Müller, F., Middendorff, R., Weyand, I., Kaupp, U.B. J. Neurosci. (1996) [Pubmed]
  32. Functional roles of aromatic residues in the ligand-binding domain of cyclic nucleotide-gated channels. Li, J., Lester, H.A. Mol. Pharmacol. (1999) [Pubmed]
  33. Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish. Morris, A.C., Schroeter, E.H., Bilotta, J., Wong, R.O., Fadool, J.M. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  34. Expression and characterization of the IPM 150 gene (IMPG1) product, a novel human photoreceptor cell-associated chondroitin-sulfate proteoglycan. Kuehn, M.H., Hageman, G.S. Matrix Biol. (1999) [Pubmed]
 
WikiGenes - Universities