The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

Edpm9  -  Estrogen-dependent pituitary mass QTL 9

Rattus norvegicus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Edpm9

 

High impact information on Edpm9

  • The loci define 21 large linkage groups corresponding to the 21 rat chromosomes, together with a pair of nearby markers on chromosome 9 that are not linked to the rest of the map [6].
  • Translocations involving the abl locus on chromosome 9 fuses the tyrosine kinase c-ABL to proteins harboring oligomerization interfaces such as BCR or TEL, enabling these ABL-fusion proteins (X-ABL) to transform cells and to induce leukemia [7].
  • Studies of congenic lines in the Brown Norway rat model of Th2-mediated immunopathological disorders show that the aurothiopropanol sulfonate-induced immunological disorder (Aiid3) locus on chromosome 9 plays a major role compared to Aiid2 on chromosome 10 [8].
  • Genome scanning identified one quantitative trait locus on chromosome 9 (approximately 17 centiMorgan (cM); log of the odds ratio (LOD) score 3.9) [9].
  • A new QTL, Ciaa3, associating with anticollagen antibody titer (antibody to PII LOD 6.5; antibody to rat type II collagen LOD 5.2) mapped to chromosome 9 [10].
 

Biological context of Edpm9

 

Anatomical context of Edpm9

  • The locus could be provisionally assigned either to chromosome 9 or to chromosome 10 by correlating the presence or absence of mouse-specific DNA fragments reactive with the probe in a panel of somatic hybrid cell lines with the presence or absence of the various mouse chromosomes [16].
 

Associations of Edpm9 with chemical compounds

  • The mouse RALDH2 gene spans >50 kb, has a structure similar to that of human class 1 aldehyde dehydrogenase genes, and localizes to the central region of chromosome 9 by single-strand polymorphism analysis [17].
  • Assignment of the mouse tartrate-resistant acid phosphatase gene (Acp5) to chromosome 9 [18].
 

Other interactions of Edpm9

  • We also find evidence for interaction (epistasis) between Edpm3 and Edpm9 and between Edpm5 and the suggested QTL on Chr 14 [19].
  • This area of chromosome 9 also contains a short, direct tandem repeat in close proximity to a paternally methylated NotI site 30 kb upstream of Rasgrf1 [20].
  • Comparative mapping between human and rat indicated that the Nidd8/of genomic region, near D9rat21 on rat chromosome 9, contains the calpain10 (Capn10) gene, which is putative type 2 diabetes-susceptibility gene in humans [21].
  • Radiation hybrid mapping, using two separate PCR amplicons from rat alpha3(IV)NC1, localized rat Col4a3 to a region of chromosome 9 [22].
  • Our findings indicated that epithelial hyperplasia of the choledocho-pancreatic duct is associated with a region on rat chromosome 14 around the Cckar gene in an additive fashion with another two susceptible loci, each on chromosome 9 and 7 [23].
 

Analytical, diagnostic and therapeutic context of Edpm9

References

  1. Homozygous deletions on the short arm of chromosome 9 in ovarian adenocarcinoma cell lines and loss of heterozygosity in sporadic tumors. Chenevix-Trench, G., Kerr, J., Friedlander, M., Hurst, T., Sanderson, B., Coglan, M., Ward, B., Leary, J., Khoo, S.K. Am. J. Hum. Genet. (1994) [Pubmed]
  2. Genome-wide linkage analysis of chronic relapsing experimental autoimmune encephalomyelitis in the rat identifies a major susceptibility locus on chromosome 9. Dahlman, I., Jacobsson, L., Glaser, A., Lorentzen, J.C., Andersson, M., Luthman, H., Olsson, T. J. Immunol. (1999) [Pubmed]
  3. Multifocal renal cell carcinoma in sibs from a chromosome 9 linked (TSC1) tuberous sclerosis family. Sampson, J.R., Patel, A., Mee, A.D. J. Med. Genet. (1995) [Pubmed]
  4. Spontaneous metastatic potential of rat hepatocarcinoma cells after cell fusion or DNA transfection. Cassingena, R., Lafarge-Frayssinet, C., Frayssinet, C., Nardeux, P., Estrade, S., Viegas-Pequignot, E., Dutrillaux, B. Int. J. Cancer (1992) [Pubmed]
  5. Linkage analysis and construction of a congenic strain for a blood pressure QTL on rat chromosome 9. Rapp, J.P., Garrett, M.R., Dene, H., Meng, H., Hoebee, B., Lathrop, G.M. Genomics (1998) [Pubmed]
  6. A genetic linkage map of the laboratory rat, Rattus norvegicus. Jacob, H.J., Brown, D.M., Bunker, R.K., Daly, M.J., Dzau, V.J., Goodman, A., Koike, G., Kren, V., Kurtz, T., Lernmark, A. Nat. Genet. (1995) [Pubmed]
  7. Targeting of the N-terminal coiled coil oligomerization interface of BCR interferes with the transformation potential of BCR-ABL and increases sensitivity to STI571. Beissert, T., Puccetti, E., Bianchini, A., Güller, S., Boehrer, S., Hoelzer, D., Ottmann, O.G., Nervi, C., Ruthardt, M. Blood (2003) [Pubmed]
  8. Studies of congenic lines in the Brown Norway rat model of Th2-mediated immunopathological disorders show that the aurothiopropanol sulfonate-induced immunological disorder (Aiid3) locus on chromosome 9 plays a major role compared to Aiid2 on chromosome 10. Mas, M., Cavaillès, P., Colacios, C., Subra, J.F., Lagrange, D., Calise, M., Christen, M.O., Druet, P., Pelletier, L., Gauguier, D., Fournié, G.J. J. Immunol. (2004) [Pubmed]
  9. The balance between CD45RChigh and CD45RClow CD4 T cells in rats is intrinsic to bone marrow-derived cells and is genetically controlled. Subra, J.F., Cautain, B., Xystrakis, E., Mas, M., Lagrange, D., van der Heijden, H., van de Gaar, M.J., Druet, P., Fournié, G.J., Saoudi, A., Damoiseaux, J. J. Immunol. (2001) [Pubmed]
  10. Identification of four new quantitative trait loci regulating arthritis severity and one new quantitative trait locus regulating autoantibody production in rats with collagen-induced arthritis. Griffiths, M.M., Wang, J., Joe, B., Dracheva, S., Kawahito, Y., Shepard, J.S., Reese, V.R., McCall-Vining, S., Hashiramoto, A., Cannon, G.W., Remmers, E.F., Wilder, R.L. Arthritis Rheum. (2000) [Pubmed]
  11. The cellular retinol binding protein II gene. Sequence analysis of the rat gene, chromosomal localization in mice and humans, and documentation of its close linkage to the cellular retinol binding protein gene. Demmer, L.A., Birkenmeier, E.H., Sweetser, D.A., Levin, M.S., Zollman, S., Sparkes, R.S., Mohandas, T., Lusis, A.J., Gordon, J.I. J. Biol. Chem. (1987) [Pubmed]
  12. Rat chromosome 9 bears a major susceptibility locus for IgE response. Mas, M., Subra, J.F., Lagrange, D., Pilipenko-Appolinaire, S., Kermarrec, N., Gauguier, D., Druet, P., Fournié, G.J. Eur. J. Immunol. (2000) [Pubmed]
  13. Detailed four-way comparative mapping and gene order analysis of the canine ctvm locus reveals evolutionary chromosome rearrangements. Andelfinger, G., Hitte, C., Etter, L., Guyon, R., Bourque, G., Tesler, G., Pevzner, P., Kirkness, E., Galibert, F., Benson, D.W. Genomics (2004) [Pubmed]
  14. Localization of a blood pressure QTL to a 2.4-cM interval on rat chromosome 9 using congenic strains. Meng, H., Garrett, M.R., Dene, H., Rapp, J.P. Genomics (2003) [Pubmed]
  15. Clonotypic chromosomal aberrations in long-term lines of myelin-specific rat T lymphocytes. Bradl, M., Schmid, M., Wekerle, H. J. Neuroimmunol. (1989) [Pubmed]
  16. Chromosomal location of the gene encoding the neural cell adhesion molecule (N-CAM) in the mouse. D'Eustachio, P., Owens, G.C., Edelman, G.M., Cunningham, B.A. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  17. Analysis of mouse retinal dehydrogenase type 2 promoter and expression. Wang, X., Sperkova, Z., Napoli, J.L. Genomics (2001) [Pubmed]
  18. Assignment of the mouse tartrate-resistant acid phosphatase gene (Acp5) to chromosome 9. Grimes, R., Reddy, S.V., Leach, R.J., Scarcez, T., Roodman, G.D., Sakaguchi, A.Y., Lalley, P.A., Windle, J.J. Genomics (1993) [Pubmed]
  19. Quantitative trait loci for estrogen-dependent pituitary tumor growth in the rat. Wendell, D.L., Gorski, J. Mamm. Genome (1997) [Pubmed]
  20. A direct repeat sequence at the Rasgrf1 locus and imprinted expression. Pearsall, R.S., Plass, C., Romano, M.A., Garrick, M.D., Shibata, H., Hayashizaki, Y., Held, W.A. Genomics (1999) [Pubmed]
  21. Capn10, a candidate gene responsible for type 2 diabetes mellitus in the OLETF rat. Muramatsu, Y., Taniguchi, Y., Kose, H., Matsumoto, K., Yamada, T., Sasaki, Y. IUBMB Life (2003) [Pubmed]
  22. Segregation of experimental autoimmune glomerulonephritis as a complex genetic trait and exclusion of Col4a3 as a candidate gene. Reynolds, J., Cook, P.R., Ryan, J.J., Norsworthy, P.J., Glazier, A.M., Duda, M.A., Evans, D.J., Aitman, T.J., Pusey, C.D. Exp. Nephrol. (2002) [Pubmed]
  23. Genetic analysis of pancreatic duct hyperplasia in Otsuka Long-Evans Tokushima Fatty rats: possible association with a region on rat chromosome 14 that includes the disrupted cholecystokinin-A receptor gene. Kanemoto, N., Kondo, M., Iwanaga, T., Hishigaki, H., Ono, T., Mizoguchi-Miyakita, A., Oga, K., Tsuji, A., Okuno, S., Watanabe, T.K., Nose, M., Tanigami, A. Pathol. Int. (2001) [Pubmed]
  24. Complementary DNA sequence and chromosomal localization of xpg, the mouse counterpart of human repair gene XPG/ERCC5. Harada, Y.N., Matsuda, Y., Shiomi, N., Shiomi, T. Genomics (1995) [Pubmed]
 
WikiGenes - Universities