The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

Edpm5  -  Estrogen-dependent pituitary mass QTL 5

Rattus norvegicus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Edpm5

 

High impact information on Edpm5

 

Chemical compound and disease context of Edpm5

 

Biological context of Edpm5

  • To investigate the role of Edpm5 in the development of these tumors, we have generated a novel congenic rat strain F344.BN-Edpm5BN by introgressing the segment of rat chromosome bearing Edpm5 from BN into the F344 strain background [1].
  • Hence at least one gene that has a large impact, directly or indirectly, on the switch to angiogenic phenotype must reside within the chromosomal interval that is the Edpm5 quantitative trait locus [1].
  • Through use of these strains, we find that Edpm5 specifically regulates the switch to angiogenic phenotype, independent of neoplasia [1].
  • Recently the putative tumor suppressor gene p16INK4 was mapped to human chromosome 9p21, which is homologous to rat chromosome 5 [11].
  • The gene for this LAP/LERP protein comprises at least 26 exons located on the long arm of chromosome 5 [12].
 

Anatomical context of Edpm5

 

Associations of Edpm5 with chemical compounds

  • In contrast, the QTL Edpm2-1 and Edpm9-2, which have been shown to each have a significant effect on estrogen-dependent pituitary mass of a magnitude similar to Edpm5, do not have any effect on VEGF level [17].
  • The male-specific QTL on chromosome 5 appeared to overlap with previously reported QTLs for stroke-associated phenotypes, but an identical gene (or genes) appeared unlikely to control these and the cholesterol traits simultaneously [18].
  • In both (ACI x COP)F(2) and (COP x ACI)F(2) populations, we find strong evidence for a major genetic determinant of susceptibility to E2-induced mammary cancer on distal rat chromosome 5 [19].
  • Mapping of rat prostatic binding protein genes C1, C2, and C3 to rat chromosome 5 by in situ hybridization [20].
  • In addition, we identified novel interactions between Nidde6 (chromosome 1) and 7/of (chromosome 13), and Nidde8 (chromosome 5) and 9/of (chromosome 19), which is involved in fasting glucose levels but not postprandial glucose levels [21].
 

Other interactions of Edpm5

 

Analytical, diagnostic and therapeutic context of Edpm5

References

  1. The Edpm5 locus prevents the 'angiogenic switch' in an estrogen-induced rat pituitary tumor. Pandey, J., Bannout, A., Wendell, D.L. Carcinogenesis (2004) [Pubmed]
  2. Rat obesity gene fatty (fa) maps to chromosome 5: evidence for homology with the mouse gene diabetes (db). Truett, G.E., Bahary, N., Friedman, J.M., Leibel, R.L. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  3. Genetic links between the acute-phase response and arthritis development in rats. Olofsson, P., Nordquist, N., Vingsbo-Lundberg, C., Larsson, A., Falkenberg, C., Pettersson, U., Akerström, B., Holmdahl, R. Arthritis Rheum. (2002) [Pubmed]
  4. High incidence of allelic loss on chromosome 5 and inactivation of p15INK4B and p16INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats. Tanaka, T., Iwasa, Y., Kondo, S., Hiai, H., Toyokuni, S. Oncogene (1999) [Pubmed]
  5. Sensitivity to cerebral ischaemic insult in a rat model of stroke is determined by a single genetic locus. Jeffs, B., Clark, J.S., Anderson, N.H., Gratton, J., Brosnan, M.J., Gauguier, D., Reid, J.L., Macrae, I.M., Dominiczak, A.F. Nat. Genet. (1997) [Pubmed]
  6. Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Sunahara, R.K., Niznik, H.B., Weiner, D.M., Stormann, T.M., Brann, M.R., Kennedy, J.L., Gelernter, J.E., Rozmahel, R., Yang, Y.L., Israel, Y. Nature (1990) [Pubmed]
  7. Genetic mapping of two new blood pressure quantitative trait loci in the rat by genotyping endothelin system genes. Deng, A.Y., Dene, H., Pravenec, M., Rapp, J.P. J. Clin. Invest. (1994) [Pubmed]
  8. Spontaneous transformation of rat ovarian surface epithelial cells: association with cytogenetic changes and implications of repeated ovulation in the etiology of ovarian cancer. Godwin, A.K., Testa, J.R., Handel, L.M., Liu, Z., Vanderveer, L.A., Tracey, P.A., Hamilton, T.C. J. Natl. Cancer Inst. (1992) [Pubmed]
  9. Characterization of blood pressure and renal function in chromosome 5 congenic strains of Dahl S rats. Roman, R.J., Hoagland, K.M., Lopez, B., Kwitek, A.E., Garrett, M.R., Rapp, J.P., Lazar, J., Jacob, H.J., Sarkis, A. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
  10. Familial calcium pyrophosphate dihydrate deposition disease and the ANKH gene. Williams, C.J. Current opinion in rheumatology. (2003) [Pubmed]
  11. Association of rat p15INK4B/p16INK4 deletions with monosomy 5 in kidney epithelial cell lines but not primary renal tumors. Knapek, D.F., Serrano, M., Beach, D., Trono, D., Walker, C.L. Cancer Res. (1995) [Pubmed]
  12. The hemidesmosomal protein bullous pemphigoid antigen 1 and the integrin beta 4 subunit bind to ERBIN. Molecular cloning of multiple alternative splice variants of ERBIN and analysis of their tissue expression. Favre, B., Fontao, L., Koster, J., Shafaatian, R., Jaunin, F., Saurat, J.H., Sonnenberg, A., Borradori, L. J. Biol. Chem. (2001) [Pubmed]
  13. The multifunctional peptidylglycine alpha-amidating monooxygenase gene: exon/intron organization of catalytic, processing, and routing domains. Ouafik, L.H., Stoffers, D.A., Campbell, T.A., Johnson, R.C., Bloomquist, B.T., Mains, R.E., Eipper, B.A. Mol. Endocrinol. (1992) [Pubmed]
  14. Rat chromosome 5 (q22-23) contains elements that control cell morphology and interactions with the extracellular matrix: a study of normal fibroblast x malignant hepatoma cell hybrids. Lewalle, J.M., Szpirer, C., Szpirer, J., Munaut, C., Foidart, J.M. Exp. Cell Res. (1991) [Pubmed]
  15. Localization of a human nucleoporin 155 gene (NUP155) to the 5p13 region and cloning of its cDNA. Zhang, X., Yang, H., Corydon, M.J., Zhang, X., Pedersen, S., Korenberg, J.R., Chen, X.N., Laporte, J., Gregersen, N., Niebuhr, E., Liu, G., Bolund, L. Genomics (1999) [Pubmed]
  16. Quantitative trait loci mapping for ethanol sensitivity and neurotensin receptor density in an F2 intercross derived from inbred high and low alcohol sensitivity selectively bred rat lines. Radcliffe, R.A., Erwin, V.G., Draski, L., Hoffmann, S., Edwards, J., Deng, X.S., Bludeau, P., Fay, T., Lundquist, K., Asperi, W., Deitrich, R.A. Alcohol. Clin. Exp. Res. (2004) [Pubmed]
  17. Estrogen-dependent growth of a rat pituitary tumor involves, but does not require, a high level of vascular endothelial growth factor. Cracchiolo, D., Swick, J.W., McKiernan, L., Sloan, E., Raina, S., Sloan, C., Wendell, D.L. Exp. Biol. Med. (Maywood) (2002) [Pubmed]
  18. Identification of quantitative trait loci for serum cholesterol levels in stroke-prone spontaneously hypertensive rats. Kato, N., Tamada, T., Nabika, T., Ueno, K., Gotoda, T., Matsumoto, C., Mashimo, T., Sawamura, M., Ikeda, K., Nara, Y., Yamori, Y. Arterioscler. Thromb. Vasc. Biol. (2000) [Pubmed]
  19. Genetic determination of susceptibility to estrogen-induced mammary cancer in the ACI rat: mapping of Emca1 and Emca2 to chromosomes 5 and 18. Gould, K.A., Tochacek, M., Schaffer, B.S., Reindl, T.M., Murrin, C.R., Lachel, C.M., VanderWoude, E.A., Pennington, K.L., Flood, L.A., Bynote, K.K., Meza, J.L., Newton, M.A., Shull, J.D. Genetics (2004) [Pubmed]
  20. Mapping of rat prostatic binding protein genes C1, C2, and C3 to rat chromosome 5 by in situ hybridization. Zhang, J., Dirckx, L., Marynen, P., Rombauts, W., Delaey, B., Van den Berghe, H., Cassiman, J.J. Cytogenet. Cell Genet. (1988) [Pubmed]
  21. Dissociation of epistatic effects involved in fasting and postprandial hyperglycemia. Narita, A., Miyake, T., Yamada, T., Taniguchi, Y., Matsumoto, K., Sasaki, Y. Res. Commun. Mol. Pathol. Pharmacol. (2000) [Pubmed]
  22. Cosegregation analysis of natriuretic peptide genes and blood pressure in the spontaneously hypertensive rat. Ye, P., West, M.J. Clin. Exp. Pharmacol. Physiol. (2003) [Pubmed]
  23. Fine mapping reveals multiple loci and a possible epistatic interaction within the mammary carcinoma susceptibility quantitative trait locus, Mcs5. Samuelson, D.J., Aperavich, B.A., Haag, J.D., Gould, M.N. Cancer Res. (2005) [Pubmed]
  24. Diet-gene interactions in estrogen-induced mammary carcinogenesis in the ACI rat. Harvell, D.M., Strecker, T.E., Xie, B., Buckles, L.K., Tochacek, M., McComb, R.D., Shull, J.D. J. Nutr. (2001) [Pubmed]
  25. Linkage mapping of the endothelin-converting enzyme gene (Ednce) to rat chromosome 5. Deng, A.Y., Rapp, J.P. Mamm. Genome (1995) [Pubmed]
  26. Suppression of estrogen-dependent MMP-9 expression by Edpm5, a genetic locus for pituitary tumor growth in rat. Sclafani, R.V., Wendell, D.L. Mol. Cell. Endocrinol. (2001) [Pubmed]
  27. Regulation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A synthase and the chromosomal localization of the human gene. Mehrabian, M., Callaway, K.A., Clarke, C.F., Tanaka, R.D., Greenspan, M., Lusis, A.J., Sparkes, R.S., Mohandas, T., Edmond, J., Fogelman, A.M. J. Biol. Chem. (1986) [Pubmed]
  28. A gene for the suppression of anchorage independence is located in rat chromosome 5 bands q22-23, and the rat alpha-interferon locus maps at the same region. Islam, M.Q., Szpirer, J., Szpirer, C., Islam, K., Dasnoy, J.F., Levan, G. J. Cell. Sci. (1989) [Pubmed]
  29. Genes encoding atrial and brain natriuretic peptides as candidates for sensitivity to brain ischemia in stroke-prone hypertensive rats. Brosnan, M.J., Clark, J.S., Jeffs, B., Negrin, C.D., Van Vooren, P., Arribas, S.M., Carswell, H., Aitman, T.J., Szpirer, C., Macrae, I.M., Dominiczak, A.F. Hypertension (1999) [Pubmed]
  30. Linkage mapping of rat chromosome 5 markers generated from chromosome-specific libraries. Lan, H., Shepel, L.A., Haag, J.D., Gould, M.N. Mamm. Genome (1999) [Pubmed]
 
WikiGenes - Universities