The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

nodC  -  N-acetylglucosaminyltransferase

Sinorhizobium fredii NGR234

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of nodC


High impact information on nodC

  • Both fusions show differences in expression when borne on inc-P vectors as compared to when located on the pSym megaplasmid. nodD expression from vector-borne copies of the nod segment and response of nodC to plant exudate appear to require additional loci on the megaplasmid [6].
  • Degenerate primers were designed based upon an alignment of the amino acid sequences of Streptococcus pyogenes HasA, Xenopus laevis DG42, and Rhizobium meliloti NodC [7].
  • Intracellular expression of NodC, encoding a chitin synthase, also reduced nod gene expression [8].
  • The nodC genes from rhizobia encode an N-acetylglucosaminyl transferase (chitin synthase) involved in the formation of lipo-chito-oligosaccharide Nod factors that initiate root nodule morphogenesis in legume plants [9].
  • We propose that this hydrophobic region contains three transmembrane spans, such that the C-terminus of NodC is located in the periplasm [9].

Chemical compound and disease context of nodC

  • Inoculation with genistein-induced Bradyrhizobium japonicum strain 532C and USDA3 also increased (45)Ca(2+) uptake; whereas, inoculation with strain Bj-168, a nodC-mutant incapable of producing LCO, did not [10].
  • Homology of Rhizobium meliloti NodC to polysaccharide polymerizing enzymes [11].
  • ExoN was found to show strong homology to a UDP-glucose pyrophosphorylase from Acetobacter xylinum, whereas ExoO displayed weak homologies to the NodC proteins from R. meliloti and R. loti [12].

Biological context of nodC


Anatomical context of nodC

  • In view of biochemical data characterizing NodC as an outer membrane protein with a large extracellular domain, the pattern of immunolabeling on thin sections suggests that NodC is produced on free cytoplasmic ribosomes prior to assembly in the membrane [18].
  • Such a model is incompatible with previous reports suggesting that NodC spans both inner and other membranes [9].

Associations of nodC with chemical compounds

  • Using translational fusions of lacZ to nodC, nodS, and nodU, the expression of these genes was shown to be inducible by the isoflavone daidzein and depended on transcription from a DNA region farther upstream [19].
  • The basic structure of the Nod signal, an acylated oligomer of N-acetylglucosamine, is synthesized through the action of NodA, NodB, and NodC [20].
  • Transcription of nodD2 and nodD3 was constitutive. nodC of R. leguminosarum biovar phaseoli was activated by each of the nodD genes of that biovar in the absence of inducers but expression was enhanced in cells grown with bean exudate or the flavonoids genistein or naringenin [21].
  • In the chromosomal nodC::lacZ fusion Bj110-573, nodC gene expression was induced by genistein 2.7-fold more in N-starved young cultures than in nonstarved ones [22].
  • We show here that one gene, nodC, shows striking similarity to genes encoding proteins known to be involved in polysaccharide synthesis in yeast and bacteria, specifically chitin and cellulose synthases, as well as a protein with unknown function in Xenopus embryos, DG42 [11].

Other interactions of nodC

  • The 3' end of nodC overlapped the 5' end of nodS by 71 nucleotides [19].
  • We report here that expression of nolX is differentially responsive to a panel of flavonoids, and that the most potent inducers are also the most active inducers of nodC, a conventional, nod box-associated gene [23].

Analytical, diagnostic and therapeutic context of nodC


  1. Biosynthesis of Azorhizobium caulinodans Nod factors. Study of the activity of the NodABCS proteins by expression of the genes in Escherichia coli. Mergaert, P., D'Haeze, W., Geelen, D., Promé, D., Van Montagu, M., Geremia, R., Promé, J.C., Holsters, M. J. Biol. Chem. (1995) [Pubmed]
  2. Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum. Spaink, H.P., Wijfjes, A.H., van der Drift, K.M., Haverkamp, J., Thomas-Oates, J.E., Lugtenberg, B.J. Mol. Microbiol. (1994) [Pubmed]
  3. Sequence and mutational analysis of the common nodBCIJ region of Rhizobium sp. (Oxytropis arctobia) strain N33, a nitrogen-fixing microsymbiont of both arctic and temperate legumes. Cloutier, J., Laberge, S., Prévost, D., Antoun, H. Mol. Plant Microbe Interact. (1996) [Pubmed]
  4. Genetic complementation of rhizobial nod mutants with Frankia DNA: artifact or reality? Cérémonie, H., Cournoyer, B., Maillet, F., Normand, P., Fernandez, M.P. Mol. Gen. Genet. (1998) [Pubmed]
  5. The influence of the symbiotic plasmid pRL1JI on the distribution of GM rhizobia in soil and crop rhizospheres, and implications for gene flow. Clark, I.M., Mendum, T.A., Hirsch, P.R. Antonie Van Leeuwenhoek (2002) [Pubmed]
  6. Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Mulligan, J.T., Long, S.R. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  7. Molecular cloning and characterization of a putative mouse hyaluronan synthase. Spicer, A.P., Augustine, M.L., McDonald, J.A. J. Biol. Chem. (1996) [Pubmed]
  8. Feedback regulation of the Bradyrhizobium japonicum nodulation genes. Loh, J.T., Stacey, G. Mol. Microbiol. (2001) [Pubmed]
  9. The C-terminal domain of the Rhizobium leguminosarum chitin synthase NodC is important for function and determines the orientation of the N-terminal region in the inner membrane. Barny, M.A., Schoonejans, E., Economou, A., Johnston, A.W., Downie, J.A. Mol. Microbiol. (1996) [Pubmed]
  10. Nod factor enhances calcium uptake by soybean. Supanjani, S., Habib, A., Mabood, F., Lee, K.D., Donnelly, D., Smith, D.L. Plant Physiol. Biochem. (2006) [Pubmed]
  11. Homology of Rhizobium meliloti NodC to polysaccharide polymerizing enzymes. Atkinson, E.M., Long, S.R. Mol. Plant Microbe Interact. (1992) [Pubmed]
  12. Identification and analysis of the Rhizobium meliloti exoAMONP genes involved in exopolysaccharide biosynthesis and mapping of promoters located on the exoHKLAMONP fragment. Becker, A., Kleickmann, A., Keller, M., Arnold, W., Pühler, A. Mol. Gen. Genet. (1993) [Pubmed]
  13. DNA sequence of the Rhizobium leguminosarum nodulation genes nodAB and C required for root hair curling. Rossen, L., Johnston, A.W., Downie, J.A. Nucleic Acids Res. (1984) [Pubmed]
  14. Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Wernegreen, J.J., Riley, M.A. Mol. Biol. Evol. (1999) [Pubmed]
  15. A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. Mulligan, J.T., Long, S.R. Genetics (1989) [Pubmed]
  16. Nucleotide sequence of Rhizobium loti nodC. Collins-Emerson, J.M., Terzaghi, E.A., Scott, D.B. Nucleic Acids Res. (1990) [Pubmed]
  17. Phylogeny of Sym plasmids of rhizobia by PCR-based sequencing of a nodC segment. Ueda, T., Suga, Y., Yahiro, N., Matsuguchi, T. J. Bacteriol. (1995) [Pubmed]
  18. Immunogold localization of the NodC and NodA proteins of Rhizobium meliloti. Johnson, D., Roth, L.E., Stacey, G. J. Bacteriol. (1989) [Pubmed]
  19. Identification of nodS and nodU, two inducible genes inserted between the Bradyrhizobium japonicum nodYABC and nodIJ genes. Göttfert, M., Hitz, S., Hennecke, H. Mol. Plant Microbe Interact. (1990) [Pubmed]
  20. Bradyrhizobium japonicum nodulation genetics. Stacey, G. FEMS Microbiol. Lett. (1995) [Pubmed]
  21. Regulatory functions of the three nodD genes of Rhizobium leguminosarum biovar phaseoli. Davis, E.O., Johnston, A.W. Mol. Microbiol. (1990) [Pubmed]
  22. Improved soybean root association of N-starved Bradyrhizobium japonicum. López-García, S.L., Vázquez, T.E., Favelukes, G., Lodeiro, A.R. J. Bacteriol. (2001) [Pubmed]
  23. Proteins from cells of Rhizobium fredii bind to DNA sequences precedingnolX, a flavonoid-inducible nod gene that is not associated with a nod box. Bellato, C.M., Balatti, P.A., Pueppke, S.G., Krishnan, H.B. Mol. Plant Microbe Interact. (1996) [Pubmed]
  24. Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP-16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Moschetti, G., Peluso, A., Protopapa, A., Anastasio, M., Pepe, O., Defez, R. Syst. Appl. Microbiol. (2005) [Pubmed]
  25. Mass spectrometric analysis of chitin oligosaccharides produced by Rhizobium NodC protein in Escherichia coli. Kamst, E., van der Drift, K.M., Thomas-Oates, J.E., Lugtenberg, B.J., Spaink, H.P. J. Bacteriol. (1995) [Pubmed]
WikiGenes - Universities