The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Acetobacter


High impact information on Acetobacter

  • In vivo cellulose ribbon assembly by the Gram-negative bacterium Acetobacter xylinum can be altered by incubation in carboxymethylcellulose (CMC), a negatively charged water-soluble cellulose derivative, and also by incubation in a variety of neutral, water-soluble cellulose derivatives [6].
  • The uniqueness of the structure and function of cyclic diguanylic acid (c-di-GMP) as an activator of the cellulose synthase of the bacterium Acetobacter xylinum makes it an attractive probe to use in a search for a c-di-GMP receptor that might be involved in the process in plants [7].
  • To comprehend the catalytic and regulatory mechanism of the cyclic diguanylic acid (c-di-GMP)-dependent cellulose synthase of Acetobacter xylinum and its relatedness to similar enzymes in other organisms, the structure of this enzyme was analyzed at the polypeptide level [8].
  • Cytochrome a1 of acetobacter aceti is a cytochrome ba functioning as ubiquinol oxidase [9].
  • Hybrid ADH consisting of the subunit I/III complex of G. suboxydans ADH and subunit II of Acetobacter aceti ADH was constructed and it had showed a significant Q1 reductase activity, indicating that subunit II has a ubiquinone-binding site [10].

Chemical compound and disease context of Acetobacter


Biological context of Acetobacter


Anatomical context of Acetobacter


Gene context of Acetobacter

  • The genes that synthesize cellulose in higher plants differ greatly from the well-characterized genes found in Acetobacter and Agrobacterium sp. More correctly designated as 'cellulose synthase catalytic subunits', plant cellulose synthase (CesA) proteins are integral membrane proteins, approximately 1,000 amino acids in length [22].
  • The experiments showed that amylose synthesis was only marginally affected by the level of basal expression from the Pm promoter of the Acetobacter xylinum phosphoglucomutase gene (celB) [23].
  • In this study, the aceA gene product expressed by Acetobacter xylinum, which is involved in the biosynthesis of the exopolysaccharide acetan, was overproduced in Escherichia coli and its function was characterised [24].
  • Cloning of the aceF gene encoding the phosphomannose isomerase and GDP-mannose pyrophosphorylase activities involved in acetan biosynthesis in Acetobacter xylinum [25].
  • The acsA and acsB genes, which are involved in cellulose synthesis in Acetobacter xylinum, were transferred into pollen grains of brown cotton with the aim of improving its fiber quality by incorporating useful prokaryotic features into the colored cotton plants [26].

Analytical, diagnostic and therapeutic context of Acetobacter


  1. Repression of lipopolysaccharide biosynthesis in Escherichia coli by an antisense RNA of Acetobacter methanolicus phage Acm1. Mamat, U., Rietschel, E.T., Schmidt, G. Mol. Microbiol. (1995) [Pubmed]
  2. Studies on recombinant Acetobacter xylinum alpha-phosphoglucomutase. Kvam, C., Olsvik, E.S., McKinley-McKee, J., Saether, O. Biochem. J. (1997) [Pubmed]
  3. Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975. Song, D.D., Jacques, N.A. Biochem. J. (1999) [Pubmed]
  4. Phage Acm1-mediated transduction in the facultatively methanol-utilizing Acetobacter methanolicus MB 58/4. Kiesel, B., Wünsche, L. J. Gen. Virol. (1993) [Pubmed]
  5. Direct incorporation of glucosamine and N-acetylglucosamine into exopolymers by Gluconacetobacter xylinus (=Acetobacter xylinum) ATCC 10245: production of chitosan-cellulose and chitin-cellulose exopolymers. Lee, J.W., Deng, F., Yeomans, W.G., Allen, A.L., Gross, R.A., Kaplan, D.L. Appl. Environ. Microbiol. (2001) [Pubmed]
  6. Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. Haigler, C.H., White, A.R., Brown, R.M., Cooper, K.M. J. Cell Biol. (1982) [Pubmed]
  7. Evidence for a cyclic diguanylic acid-dependent cellulose synthase in plants. Amor, Y., Mayer, R., Benziman, M., Delmer, D. Plant Cell (1991) [Pubmed]
  8. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. Mayer, R., Ross, P., Weinhouse, H., Amikam, D., Volman, G., Ohana, P., Calhoon, R.D., Wong, H.C., Emerick, A.W., Benziman, M. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  9. Cytochrome a1 of acetobacter aceti is a cytochrome ba functioning as ubiquinol oxidase. Matsushita, K., Shinagawa, E., Adachi, O., Ameyama, M. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  10. Function of multiple heme c moieties in intramolecular electron transport and ubiquinone reduction in the quinohemoprotein alcohol dehydrogenase-cytochrome c complex of Gluconobacter suboxydans. Matsushita, K., Yakushi, T., Toyama, H., Shinagawa, E., Adachi, O. J. Biol. Chem. (1996) [Pubmed]
  11. Molecular cloning of the isoquinoline 1-oxidoreductase genes from Pseudomonas diminuta 7, structural analysis of iorA and iorB, and sequence comparisons with other molybdenum-containing hydroxylases. Lehmann, M., Tshisuaka, B., Fetzner, S., Lingens, F. J. Biol. Chem. (1995) [Pubmed]
  12. Regulatory properties of the alpha-ketoglutarate dehydrogenase complex of Acetobacter xylinum. In situ studies and localization of the allosteric response in the E1 component. Kornfeld, S., Benziman, M., Milner, Y. J. Biol. Chem. (1978) [Pubmed]
  13. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. Lin, F.C., Brown, R.M., Drake, R.R., Haley, B.E. J. Biol. Chem. (1990) [Pubmed]
  14. Substitution of Asp-309 by Asn in the Arg-Asp-Pro (RDP) motif of Acetobacter diazotrophicus levansucrase affects sucrose hydrolysis, but not enzyme specificity. Batista, F.R., Hernández, L., Fernández, J.R., Arrieta, J., Menéndez, C., Gómez, R., Támbara, Y., Pons, T. Biochem. J. (1999) [Pubmed]
  15. Biosynthesis of monobactam compounds: origin of the carbon atoms in the beta-lactam ring. O'Sullivan, J., Gillum, A.M., Aklonis, C.A., Souser, M.L., Sykes, R.B. Antimicrob. Agents Chemother. (1982) [Pubmed]
  16. Nucleotide sequence and expression analysis of the Acetobacter xylinum uridine diphosphoglucose pyrophosphorylase gene. Brede, G., Fjaervik, E., Valla, S. J. Bacteriol. (1991) [Pubmed]
  17. Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role. Weinhouse, H., Benziman, M. J. Bacteriol. (1976) [Pubmed]
  18. Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor sigma B. Varón, D., Boylan, S.A., Okamoto, K., Price, C.W. J. Bacteriol. (1993) [Pubmed]
  19. Analysis of 76 kb of the chlorella virus PBCV-1 330-kb genome: map positions 182 to 258. Kutish, G.F., Li, Y., Lu, Z., Furuta, M., Rock, D.L., Van Etten, J.L. Virology (1996) [Pubmed]
  20. Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the alpha-Proteobacteria. Yamada, Y., Katsura, K., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Uchimura, T., Komagata, K. Int. J. Syst. Evol. Microbiol. (2000) [Pubmed]
  21. A gene encoding phosphatidylethanolamine N-methyltransferase from Acetobacter aceti and some properties of its disruptant. Hanada, T., Kashima, Y., Kosugi, A., Koizumi, Y., Yanagida, F., Udaka, S. Biosci. Biotechnol. Biochem. (2001) [Pubmed]
  22. Higher plant cellulose synthases. Richmond, T. Genome Biol. (2000) [Pubmed]
  23. Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Blatny, J.M., Brautaset, T., Winther-Larsen, H.C., Haugan, K., Valla, S. Appl. Environ. Microbiol. (1997) [Pubmed]
  24. Expression and biochemical characterisation of recombinant AceA, a bacterial alpha-mannosyltransferase. Geremia, R.A., Roux, M., Ferreiro, D.U., Dauphin-Dubois, R., Lellouch, A.C., Ielpi, L. Mol. Gen. Genet. (1999) [Pubmed]
  25. Cloning of the aceF gene encoding the phosphomannose isomerase and GDP-mannose pyrophosphorylase activities involved in acetan biosynthesis in Acetobacter xylinum. Griffin, A.M., Poelwijk, E.S., Morris, V.J., Gasson, M.J. FEMS Microbiol. Lett. (1997) [Pubmed]
  26. Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Li, X., Wang, X.D., Zhao, X., Dutt, Y. Plant Cell Rep. (2004) [Pubmed]
  27. Characterisation of the polysaccharide produced by Acetobacter xylinum strain CR1/4 by light scattering and atomic force microscopy. Ridout, M.J., Brownsey, G.J., Gunning, A.P., Morris, V.J. Int. J. Biol. Macromol. (1998) [Pubmed]
  28. Cloning and characterization of ethanol-regulated esterase genes in Acetobacter pasteurianus. Kashima, Y., Nakajima, Y., Nakano, T., Tayama, K., Koizumi, Y., Udaka, S., Yanagida, F. J. Biosci. Bioeng. (1999) [Pubmed]
  29. Purification of restriction endonuclease from Acetobacter aceti IFO 3281 (AatII) and its properties. Sato, H., Suzuki, T., Yamada, Y. Agric. Biol. Chem. (1990) [Pubmed]
WikiGenes - Universities