The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Albalith     sulfanylidenezinc

Synonyms: Cleartran, Sachtolith, Sphalerite, thioxozinc, Irtran 2, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of sulfanylidenezinc


High impact information on sulfanylidenezinc

  • Abundant, micrometer-scale, spherical aggregates of 2- to 5-nanometer-diameter sphalerite (ZnS) particles formed within natural biofilms dominated by relatively aerotolerant sulfate-reducing bacteria of the family Desulfobacteriaceae [6].
  • Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection [7].
  • To investigate half-metallic exchange bias interfaces, magnetic structures at ferromagnetic (FM)/antiferromagnetic (AFM) interfaces in the zinc blende transition-metal chalcogenides, and with compensated and uncompensated AFM interfaces, were determined by the full-potential linearized augmented plane-wave method [8].
  • Scanning tunneling microscopy and surface simulation of zinc-blende GaN(001) intrinsic 4x reconstruction: linear gallium tetramers [9]?
  • Direct conversion of tert-beta-bromo alcohols to ketones with zinc sulfide and DMSO [10].

Biological context of sulfanylidenezinc

  • Naturally occurring metallothionein (MT) is a metal binding protein, which binds to seven Zn2+ through 20 conserved cysteines and forms two metal binding clusters with a Zinc-Blende structure [11].
  • A simple fabrication of two-dimensional zinc sulfide colloidal arrays with the assistance of a multihydroxy polymer is described, which can potentially be utilized in different technological fields, such as biosensor and electrooptical devices as well as a platform for studies of energy transfer between colloidal particles [12].

Anatomical context of sulfanylidenezinc

  • We present a new technique that allows zinc ions in synaptic and secretory vesicles of biopsy and early autopsy material (< 2 hr post mortem) to be transformed to nanometer-sized zinc sulfide crystal lattices for subsequent autometallographic (AMG) development [13].
  • The radioactivities of 241Am in fetus, fetal membrane, and placenta were determined, and its distribution in the feto-placental system was investigated by high-speed autoradiography using a silver-activated zinc sulfide-coated membrane as an intensifying screen [14].
  • In the hippocampus the pattern of the oxygen tensions reflected the autometallographic zinc sulphide (AMG(ZnS)) pattern, i.e. the pattern of zinc enriched (ZEN) terminals [15].
  • A lacquer-based carrier allows the zinc sulfide to remain in suspension and permits permanent marking onto diverse laboratory substrates such as x-ray films, paper, plastic wraps and nitrocellulose- and nylon-based membranes [16].
  • By injecting sodium sulphide into the vena cava of deeply anaesthetized animals, it is possible to bind chemically the vesicular zinc, i.e. chelatable zinc (zinc ions), in secretory and synaptic vesicles, in the form of zinc sulphide crystal lattices [17].

Associations of sulfanylidenezinc with other chemical compounds

  • On the basis of first-principles electronic band structure theory, we calculated the refractive indices of the zinc blende and wurtzite structures of the chalcogenides ZnQ and CdQ (Q = O, S, Se, Te) and analyzed their trends by calculating the total absorption power per unit formula [18].
  • The addition of ECP correspondingly reduces the negative electrophoretic mobilities of sphalerite and galena in absolute magnitude without shifting their isoelectric points [19].
  • The theoretical acid generating potential (TAGP) and 'total' concentrations of Cu, Fe and Zn of the tailings, were found to increase greatly with depth, reflecting an increase in the abundance of chalcopyrite (CuFeS(2)), pyrite (FeS(2)) and sphalerite (ZnS), as detected by X-ray diffraction (XRD) analysis [20].
  • Aggregation of sphalerite due to the polymerization/flocculation action of zinc hydroxide is proposed [21].
  • The isoelectric points of high purity zinc sulfide and that of chemically synthesized, biogenically produced and zinc sulfide precipitated using bacterially produced hydrogen sulfide gas (BPH-ZnS) were located at pH 3, 7.8, 2.8 and 8, respectively [22].

Gene context of sulfanylidenezinc


Analytical, diagnostic and therapeutic context of sulfanylidenezinc


  1. Viral assembly of oriented quantum dot nanowires. Mao, C., Flynn, C.E., Hayhurst, A., Sweeney, R., Qi, J., Georgiou, G., Iverson, B., Belcher, A.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  2. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Fowler, T.A., Crundwell, F.K. Appl. Environ. Microbiol. (1999) [Pubmed]
  3. Synthesis and characterization of metal sulfide clusters for toxicological studies. Bowles, L.C., Bell, R.A., Ernste, M.J., Kramer, J.R., Manolopoulos, H., Ogden, N. Environ. Toxicol. Chem. (2002) [Pubmed]
  4. A simplified procedure for the physical development of the sulphide silver method to reveal synaptic zinc in combination with immunocytochemistry at light and electron microscopy. De Biasi, S., Bendotti, C. J. Neurosci. Methods (1998) [Pubmed]
  5. Biological Synthesis of Semiconductor Zinc Sulfide Nanoparticles by Immobilized Rhodobacter sphaeroides. Bai, H.J., Zhang, Z.M., Gong, J. Biotechnol. Lett. (2006) [Pubmed]
  6. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Labrenz, M., Druschel, G.K., Thomsen-Ebert, T., Gilbert, B., Welch, S.A., Kemner, K.M., Logan, G.A., Summons, R.E., De Stasio, G., Bond, P.L., Lai, B., Kelly, S.D., Banfield, J.F. Science (2000) [Pubmed]
  7. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Chan, W.C., Nie, S. Science (1998) [Pubmed]
  8. Half-metallic exchange bias ferromagnetic/antiferromagnetic interfaces in transition-metal chalcogenides. Nakamura, K., Kato, Y., Akiyama, T., Ito, T., Freeman, A.J. Phys. Rev. Lett. (2006) [Pubmed]
  9. Scanning tunneling microscopy and surface simulation of zinc-blende GaN(001) intrinsic 4x reconstruction: linear gallium tetramers? Al-Brithen, H.A., Yang, R., Haider, M.B., Constantin, C., Lu, E., Smith, A.R., Sandler, N., Ordejón, P. Phys. Rev. Lett. (2005) [Pubmed]
  10. Direct conversion of tert-beta-bromo alcohols to ketones with zinc sulfide and DMSO. Bettadaiah, B.K., Gurudutt, K.N., Srinivas, P. J. Org. Chem. (2003) [Pubmed]
  11. Mn,Cd-metallothionein-2: a room temperature magnetic protein. Chang, C.C., Lee, S.F., Sun, K.W., Ho, C.C., Chen, Y.T., Chang, C.H., Kan, L.S. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  12. Poly(ethylene glycol)-assisted two-dimensional self-assembly of zinc sulfide microspheres. Wu, Q., Cao, H., Zhang, S., Zhang, X. Inorganic chemistry. (2006) [Pubmed]
  13. Autometallographic silver enhancement of zinc sulfide crystals created in cryostat sections from human brain biopsies: a new technique that makes it feasible to demonstrate zinc ions in tissue sections from biopsies and early autopsy material. Danscher, G., Juhl, S., Stoltenberg, M., Krunderup, B., Schrøder, H.D., Andreasen, A. J. Histochem. Cytochem. (1997) [Pubmed]
  14. Placental transfer and distribution of 241Am in the rat. Hisamatsu, S., Takizawa, Y. Radiat. Res. (1983) [Pubmed]
  15. Distinct differences in partial oxygen pressure at micrometer ranges in the rat hippocampal region. Andreasen, A., Danscher, G., Juhl, S., Stoltenberg, M., Revsbech, N.P., Jensen, H., Jensen, K.B. J. Neurosci. Methods (1997) [Pubmed]
  16. Development and application of a nonradioactive phosphorescent autoradiograph marker. Seto, D., Rohrabacher, C. BioTechniques (1991) [Pubmed]
  17. The autometallographic zinc-sulphide method. A new approach involving in vivo creation of nanometer-sized zinc sulphide crystal lattices in zinc-enriched synaptic and secretory vesicles. Danscher, G. Histochem. J. (1996) [Pubmed]
  18. Structural and electronic factors controlling the refractive indices of the chalcogenides ZnQ and CdQ (Q = O, S, Se, Te). Rocquefelte, X., Whangbo, M.H., Jobic, S. Inorganic chemistry. (2005) [Pubmed]
  19. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. Santhiya, D., Subramanian, S., Natarajan, K.A. Journal of colloid and interface science. (2002) [Pubmed]
  20. An assessment of sulphide oxidation in abandoned base-metal tailings, Te Aroha, New Zealand. Morrell, W.J., Stewart, R.B., Gregg, P.E., Bolan, N.S., Horne, D. Environ. Pollut. (1996) [Pubmed]
  21. Aggregation of sphalerite: role of zinc ions. Mirnezami, M., Restrepo, L., Finch, J.A. Journal of colloid and interface science. (2003) [Pubmed]
  22. Bioremediation of zinc using Desulfotomaculum nigrificans: Bioprecipitation and characterization studies. Radhika, V., Subramanian, S., Natarajan, K.A. Water Res. (2006) [Pubmed]
  23. Application of native-state electrospray mass spectrometry to identify zinc-binding sites on engineered hemoglobin. Lippincott, J., Fattor, T.J., Lemon, D.D., Apostol, I. Anal. Biochem. (2000) [Pubmed]
  24. High affinity inhibitors of the dopamine transporter (DAT): novel biotinylated ligands for conjugation to quantum dots. Tomlinson, I.D., Mason, J.N., Blakely, R.D., Rosenthal, S.J. Bioorg. Med. Chem. Lett. (2006) [Pubmed]
  25. Abundance of zinc ions in synaptic terminals of mocha mutant mice: zinc transporter 3 immunohistochemistry and zinc sulphide autometallography. Stoltenberg, M., Nejsum, L.N., Larsen, A., Danscher, G. J. Mol. Histol. (2004) [Pubmed]
  26. Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte. Gillies, G., Kappl, M., Butt, H.J. Langmuir : the ACS journal of surfaces and colloids. (2005) [Pubmed]
  27. Mild benzene-thermal route to GaP nanorods and nanospheres. Gao, S., Xie, Y., Lu, J., Du, G., He, W., Cui, D., Huang, B., Jiang, M. Inorganic chemistry. (2002) [Pubmed]
  28. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. Ihn, S.G., Song, J.I., Kim, T.W., Leem, D.S., Lee, T., Lee, S.G., Koh, E.K., Song, K. Nano Lett. (2007) [Pubmed]
WikiGenes - Universities