The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gravitropism


High impact information on Gravitropism


Biological context of Gravitropism


Anatomical context of Gravitropism


Associations of Gravitropism with chemical compounds


Gene context of Gravitropism


Analytical, diagnostic and therapeutic context of Gravitropism


  1. The response to auxin of rapeseed (Brassica napus L.) roots displaying reduced gravitropism due to transformation by Agrobacterium rhizogenes. Legue, V., Driss-Ecole, D., Maldiney, R., Tepfer, M., Perbal, G. Planta (1996) [Pubmed]
  2. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B., Feldmann, K.A. Science (1996) [Pubmed]
  3. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Swarup, R., Friml, J., Marchant, A., Ljung, K., Sandberg, G., Palme, K., Bennett, M. Genes Dev. (2001) [Pubmed]
  4. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Luschnig, C., Gaxiola, R.A., Grisafi, P., Fink, G.R. Genes Dev. (1998) [Pubmed]
  5. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Abas, L., Benjamins, R., Malenica, N., Paciorek, T., Wiśniewska, J., Wirniewska, J., Moulinier-Anzola, J.C., Sieberer, T., Friml, J., Luschnig, C. Nat. Cell Biol. (2006) [Pubmed]
  6. Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. Weijers, D., Benkova, E., Jäger, K.E., Schlereth, A., Hamann, T., Kientz, M., Wilmoth, J.C., Reed, J.W., Jürgens, G. EMBO J. (2005) [Pubmed]
  7. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Tatematsu, K., Kumagai, S., Muto, H., Sato, A., Watahiki, M.K., Harper, R.M., Liscum, E., Yamamoto, K.T. Plant Cell (2004) [Pubmed]
  8. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. Guan, C., Rosen, E.S., Boonsirichai, K., Poff, K.L., Masson, P.H. Plant Physiol. (2003) [Pubmed]
  9. Role of auxin-induced reactive oxygen species in root gravitropism. Joo, J.H., Bae, Y.S., Lee, J.S. Plant Physiol. (2001) [Pubmed]
  10. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases. Shin, H., Shin, H.S., Guo, Z., Blancaflor, E.B., Masson, P.H., Chen, R. Plant J. (2005) [Pubmed]
  11. A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Yano, D., Sato, M., Saito, C., Sato, M.H., Morita, M.T., Tasaka, M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  12. The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Hou, G., Kramer, V.L., Wang, Y.S., Chen, R., Perbal, G., Gilroy, S., Blancaflor, E.B. Plant J. (2004) [Pubmed]
  13. On the nature and origin of the calcium asymmetry arising during gravitropic response in etiolated pea epicotyls. Migliaccio, F., Galston, A.W. Plant Physiol. (1987) [Pubmed]
  14. Blue-light receptor requirement for gravitropism, autochemotropism and ethylene response in Phycomyces. Campuzano, V., Galland, P., Alvarez, M.I., Eslava, A.P. Photochem. Photobiol. (1996) [Pubmed]
  15. The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots. Hasenstein, K.H., Blancaflor, E.B., Lee, J.S. Physiol. Plantarum (1999) [Pubmed]
  16. Rapid redistribution of auxin-regulated RNAs during gravitropism. McClure, B.A., Guilfoyle, T. Science (1989) [Pubmed]
  17. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Li, L., Xu, J., Xu, Z.H., Xue, H.W. Plant Cell (2005) [Pubmed]
  18. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Buer, C.S., Muday, G.K. Plant Cell (2004) [Pubmed]
  19. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Chen, R., Hilson, P., Sedbrook, J., Rosen, E., Caspar, T., Masson, P.H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  20. SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Kato, T., Morita, M.T., Fukaki, H., Yamauchi, Y., Uehara, M., Niihama, M., Tasaka, M. Plant Cell (2002) [Pubmed]
  21. ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Boonsirichai, K., Sedbrook, J.C., Chen, R., Gilroy, S., Masson, P.H. Plant Cell (2003) [Pubmed]
  22. Conversion of functional specificity in Qb-SNARE VTI1 homologues of Arabidopsis. Niihama, M., Uemura, T., Saito, C., Nakano, A., Sato, M.H., Tasaka, M., Morita, M.T. Curr. Biol. (2005) [Pubmed]
  23. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Chen, G., Bi, Y.R., Li, N. Plant J. (2005) [Pubmed]
  24. Happy end in sight after 70 years of controversy. Yamamoto, K.T. Trends Plant Sci. (2003) [Pubmed]
  25. Inhibition of gravitropism in oat coleoptiles by the calcium chelator, ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid. Daye, S., Biro, R.L., Roux, S.J. Physiol. Plantarum (1984) [Pubmed]
WikiGenes - Universities