The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

XRCC1  -  X-ray repair complementing defective...

Homo sapiens

Synonyms: DNA repair protein XRCC1, X-ray repair cross-complementing protein 1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of XRCC1

 

Psychiatry related information on XRCC1

 

High impact information on XRCC1

  • Moreover, we show that inhibiting XRCC1 phosphorylation by mutation of the CK2 phosphorylation sites or preventing CK2 activity using a highly specific inhibitor ablates the rapid repair of cellular DNA single-strand breaks by XRCC1 [10].
  • We show that this essential protein kinase phosphorylates the scaffold protein XRCC1 and thereby enables the assembly and activity of DNA single-strand break repair protein complexes in vitro and at sites of chromosomal breakage [10].
  • Here, we report that XRCC1 interacts with human polynucleotide kinase in addition to its established interactions with DNA polymerase-beta and DNA ligase III [11].
  • Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair [12].
  • BACKGROUND & AIMS: Adenosine diphosphate ribosyl transferase (ADPRT) and x-ray repair cross-complementing 1 (XRCC1) are major DNA base excision repair proteins acting interactively in repair processes [13].
 

Chemical compound and disease context of XRCC1

 

Biological context of XRCC1

  • These data indicate that XRCC1, which has no known catalytic activity, might serve as a scaffold protein during base excision-repair [18].
  • We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities [19].
  • The compact XRCC1 structure explains the observed sequence homology between different BRCT motifs and provides a framework for modelling other BRCT domains [1].
  • However, the distribution of the XRCC1 Arg399Gln genotypes was significantly different when comparing the t-AML and control groups (chi(2), P =.03) [2].
  • XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage [20].
 

Anatomical context of XRCC1

 

Associations of XRCC1 with chemical compounds

 

Physical interactions of XRCC1

 

Enzymatic interactions of XRCC1

  • An XRCC1 protein in which this 20mer was deleted could not maintain normal levels of DNA ligase III-alpha in transfected rodent cells, a phenotype associated with defective repair [5] [27].
 

Co-localisations of XRCC1

  • XRCC1 co-localizes and physically interacts with PCNA [33].
  • This process correlates with the appearance of XRCC1 nuclear foci that colocalize with Rad51 and may thus function in concert with homologous recombination [34].
 

Regulatory relationships of XRCC1

 

Other interactions of XRCC1

  • We studied polymorphisms in 3 DNA repair genes: XRCC1, XRCC3, and XPD [2].
  • In a multivariate analysis, only XRCC1 R399Q and ERCC1 19007T>C remained significant [36].
  • In the univariate analysis, adjusted for age, sex, and Dukes' stage, three polymorphisms were significantly associated with better prognosis: XRCC1 R399Q [hazard ratio (HR), 0.38; 95% CI, 0.17-0.85], XRCC3 T141M (HR, 0.66; 95% CI, 0.45-0.97), and MGMT L84F (HR, 0.14; 95% CI, 0.02-0.99) [36].
  • It is noteworthy that 3 of these genes lie in the same region of chromosome 19: genes ERCC1 and ERCC2, which are involved in nucleotide excision repair, and XRCC1, which is involved in the repair of strand breaks [37].
  • The interaction between DNA ligase III alpha and XRCC1, which occurs through BRCT motifs in the C-termini of these polypeptides, implicates this isoform of DNA ligase III in the repair of DNA single-strand breaks and BER [38].
 

Analytical, diagnostic and therapeutic context of XRCC1

References

  1. Structure of an XRCC1 BRCT domain: a new protein-protein interaction module. Zhang, X., Moréra, S., Bates, P.A., Whitehead, P.C., Coffer, A.I., Hainbucher, K., Nash, R.A., Sternberg, M.J., Lindahl, T., Freemont, P.S. EMBO J. (1998) [Pubmed]
  2. The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Seedhouse, C., Bainton, R., Lewis, M., Harding, A., Russell, N., Das-Gupta, E. Blood (2002) [Pubmed]
  3. Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Hu, J.J., Smith, T.R., Miller, M.S., Mohrenweiser, H.W., Golden, A., Case, L.D. Carcinogenesis (2001) [Pubmed]
  4. Polymorphisms in DNA repair genes in the molecular pathogenesis of esophageal (Barrett) adenocarcinoma. Casson, A.G., Zheng, Z., Evans, S.C., Veugelers, P.J., Porter, G.A., Guernsey, D.L. Carcinogenesis (2005) [Pubmed]
  5. DNA-repair genetic polymorphisms and breast cancer risk. Smith, T.R., Levine, E.A., Perrier, N.D., Miller, M.S., Freimanis, R.I., Lohman, K., Case, L.D., Xu, J., Mohrenweiser, H.W., Hu, J.J. Cancer Epidemiol. Biomarkers Prev. (2003) [Pubmed]
  6. Prognostic and predictive role of JWA and XRCC1 expressions in gastric cancer. Wang, S., Wu, X., Chen, Y., Zhang, J., Ding, J., Zhou, Y., He, S., Tan, Y., Qiang, F., Bai, J., Zeng, J., Gong, Z., Li, A., Li, G., Røe, O.D., Zhou, J. Clin. Cancer Res. (2012) [Pubmed]
  7. The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4. Clements, P.M., Breslin, C., Deeks, E.D., Byrd, P.J., Ju, L., Bieganowski, P., Brenner, C., Moreira, M.C., Taylor, A.M., Caldecott, K.W. DNA Repair (Amst.) (2004) [Pubmed]
  8. Polymorphisms of XRCC1 gene, alcohol consumption and colorectal cancer. Hong, Y.C., Lee, K.H., Kim, W.C., Choi, S.K., Woo, Z.H., Shin, S.K., Kim, H. Int. J. Cancer (2005) [Pubmed]
  9. The Arg194Trp polymorphism in DNA repair gene XRCC1 and the risk for sporadic late-onset Alzheimer's disease. Doğru-Abbasoğlu, S., Aykaç-Toker, G., Hanagasi, H.A., Gürvit, H., Emre, M., Uysal, M. Neurol. Sci. (2007) [Pubmed]
  10. The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Loizou, J.I., El-Khamisy, S.F., Zlatanou, A., Moore, D.J., Chan, D.W., Qin, J., Sarno, S., Meggio, F., Pinna, L.A., Caldecott, K.W. Cell (2004) [Pubmed]
  11. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Whitehouse, C.J., Taylor, R.M., Thistlethwaite, A., Zhang, H., Karimi-Busheri, F., Lasko, D.D., Weinfeld, M., Caldecott, K.W. Cell (2001) [Pubmed]
  12. Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Heale, J.T., Ball, A.R., Schmiesing, J.A., Kim, J.S., Kong, X., Zhou, S., Hudson, D.F., Earnshaw, W.C., Yokomori, K. Mol. Cell (2006) [Pubmed]
  13. Adenosine diphosphate ribosyl transferase and x-ray repair cross-complementing 1 polymorphisms in gastric cardia cancer. Miao, X., Zhang, X., Zhang, L., Guo, Y., Hao, B., Tan, W., He, F., Lin, D. Gastroenterology (2006) [Pubmed]
  14. Interaction between genetic variations in DNA repair genes and plasma folate on breast cancer risk. Han, J., Hankinson, S.E., Zhang, S.M., De Vivo, I., Hunter, D.J. Cancer Epidemiol. Biomarkers Prev. (2004) [Pubmed]
  15. The XRCC1 codon 399 Gln allele is associated with adenine to guanine p53 mutations in non-small cell lung cancer. Casse, C., Hu, Y.C., Ahrendt, S.A. Mutat. Res. (2003) [Pubmed]
  16. XRCC1 is required for DNA single-strand break repair in human cells. Brem, R., Hall, J. Nucleic Acids Res. (2005) [Pubmed]
  17. Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells. Caldecott, K.W., Tucker, J.D., Stanker, L.H., Thompson, L.H. Nucleic Acids Res. (1995) [Pubmed]
  18. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. Kubota, Y., Nash, R.A., Klungland, A., Schär, P., Barnes, D.E., Lindahl, T. EMBO J. (1996) [Pubmed]
  19. XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions. Vidal, A.E., Boiteux, S., Hickson, I.D., Radicella, J.P. EMBO J. (2001) [Pubmed]
  20. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Masson, M., Niedergang, C., Schreiber, V., Muller, S., Menissier-de Murcia, J., de Murcia, G. Mol. Cell. Biol. (1998) [Pubmed]
  21. A new XRCC1-containing complex and its role in cellular survival of methyl methanesulfonate treatment. Luo, H., Chan, D.W., Yang, T., Rodriguez, M., Chen, B.P., Leng, M., Mu, J.J., Chen, D., Songyang, Z., Wang, Y., Qin, J. Mol. Cell. Biol. (2004) [Pubmed]
  22. Mammalian DNA ligases. Tomkinson, A.E., Levin, D.S. Bioessays (1997) [Pubmed]
  23. A population-based study of the Arg399Gln polymorphism in X-ray repair cross- complementing group 1 (XRCC1) and risk of pancreatic adenocarcinoma. Duell, E.J., Holly, E.A., Bracci, P.M., Wiencke, J.K., Kelsey, K.T. Cancer Res. (2002) [Pubmed]
  24. Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair. Cappelli, E., Taylor, R., Cevasco, M., Abbondandolo, A., Caldecott, K., Frosina, G. J. Biol. Chem. (1997) [Pubmed]
  25. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Caldecott, K.W., McKeown, C.K., Tucker, J.D., Ljungquist, S., Thompson, L.H. Mol. Cell. Biol. (1994) [Pubmed]
  26. Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1. Marsin, S., Vidal, A.E., Sossou, M., Ménissier-de Murcia, J., Le Page, F., Boiteux, S., de Murcia, G., Radicella, J.P. J. Biol. Chem. (2003) [Pubmed]
  27. Role of a BRCT domain in the interaction of DNA ligase III-alpha with the DNA repair protein XRCC1. Taylor, R.M., Wickstead, B., Cronin, S., Caldecott, K.W. Curr. Biol. (1998) [Pubmed]
  28. Completion of base excision repair by mammalian DNA ligases. Tomkinson, A.E., Chen, L., Dong, Z., Leppard, J.B., Levin, D.S., Mackey, Z.B., Motycka, T.A. Prog. Nucleic Acid Res. Mol. Biol. (2001) [Pubmed]
  29. The FHA domain of aprataxin interacts with the C-terminal region of XRCC1. Date, H., Igarashi, S., Sano, Y., Takahashi, T., Takahashi, T., Takano, H., Tsuji, S., Nishizawa, M., Onodera, O. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  30. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Caldecott, K.W., Aoufouchi, S., Johnson, P., Shall, S. Nucleic Acids Res. (1996) [Pubmed]
  31. Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Leppard, J.B., Dong, Z., Mackey, Z.B., Tomkinson, A.E. Mol. Cell. Biol. (2003) [Pubmed]
  32. MNNG-induced Cell Death Is Controlled by Interactions between PARP-1, Poly(ADP-ribose) Glycohydrolase, and XRCC1. Keil, C., Gr??be, T., Li Oei, S. J. Biol. Chem. (2006) [Pubmed]
  33. XRCC1 co-localizes and physically interacts with PCNA. Fan, J., Otterlei, M., Wong, H.K., Tomkinson, A.E., Wilson, D.M. Nucleic Acids Res. (2004) [Pubmed]
  34. A cell cycle-specific requirement for the XRCC1 BRCT II domain during mammalian DNA strand break repair. Taylor, R.M., Moore, D.J., Whitehouse, J., Johnson, P., Caldecott, K.W. Mol. Cell. Biol. (2000) [Pubmed]
  35. Rho exchange factor ECT2 is induced by growth factors and regulates cytokinesis through the N-terminal cell cycle regulator-related domains. Saito, S., Tatsumoto, T., Lorenzi, M.V., Chedid, M., Kapoor, V., Sakata, H., Rubin, J., Miki, T. J. Cell. Biochem. (2003) [Pubmed]
  36. Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Moreno, V., Gemignani, F., Landi, S., Gioia-Patricola, L., Chabrier, A., Blanco, I., González, S., Guino, E., Capellà, G., Canzian, F. Clin. Cancer Res. (2006) [Pubmed]
  37. Properties and applications of human DNA repair genes. Thompson, L.H. Mutat. Res. (1991) [Pubmed]
  38. Structure and function of mammalian DNA ligases. Tomkinson, A.E., Mackey, Z.B. Mutat. Res. (1998) [Pubmed]
  39. Complementation of repair gene mutations on the hemizygous chromosome 9 in CHO: a third repair gene on human chromosome 19. Thompson, L.H., Bachinski, L.L., Stallings, R.L., Dolf, G., Weber, C.A., Westerveld, A., Siciliano, M.J. Genomics (1989) [Pubmed]
 
WikiGenes - Universities