The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Shear Strength

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on Shear Strength

 

Biological context of Shear Strength

 

Anatomical context of Shear Strength

 

Associations of Shear Strength with chemical compounds

  • There appeared to be no advantage to multiple layers of beads, and the plasma-sprayed cobalt-chromium and grit-blasted titanium surfaces showed lower shear strength and bone apposition than the other groups [12].
  • We have investigated the bone-implant interface shear strength of hydroxyapatite (HA)-coated Ti-6Al-4V (HA-coating A) (roughness average, Ra = 3.4 +/- 0.5 microns) and HA-coated Ti-6Al-4V with a rougher surface (HA-coating B) (Ra = 8.4 +/- 1.8 microns) [13].
  • 4-META/MMA-TBB cement had a significantly higher interfacial shear strength than the conventional PMMA cement: 201 N and 90 N, on average, for the implant-cement interface (p<0.01); and 138 N and 89 N, on average, for the bone-cement interface (p<0.01), at 12 weeks [14].
  • The interface shear strength of the dense alumina was significantly lower than that of other implants at both 4 and 12 weeks after implantation [15].
  • The mean shear strength of the silane-coated samples ranged from 18.2 to 24.1 MPa, and the mean shear strength of the uncoated samples ranged from 7.6 to 15.0 MPa [16].
 

Gene context of Shear Strength

  • The shear strength and rigidity of the wet masses were in the order of EC FP > SMCC 50 > MCC PH101 > HPMC, whereas the elastic recovery was in the opposite order [17].
  • Among these four materials, the cells on collagen-coated polystyrene have the highest cell adhesive shear strength and cell detachment surface energy (1500 Pa and 29 pJ on average, respectively), followed by the cells on fibronectin-coated polystyrene (1000 Pa and 16 pJ, respectively) [18].
  • Samples oriented with tubules along the long axis of the specimen and tested with shear force applied perpendicular to the tubule direction had significantly higher (p < 0.05; two-way ANOVA) shear strength (78.0 +/- 8.5 MPa) [19].
  • The purpose of this study was to compare the retention and shear strength of teeth restored with the Para Plus post (P) and the C post (C1 and C2) systems [20].
  • Bone-implant contact and interface shear strength of BMP-2 implants were lower than HA implants at 2 weeks [21].
 

Analytical, diagnostic and therapeutic context of Shear Strength

References

  1. Adhesive bonding of titanium with a titanate coupler and 4-META/MMA-TBB opaque resin. Matsumura, H., Yoshida, K., Tanaka, T., Atsuta, M. J. Dent. Res. (1990) [Pubmed]
  2. Mechanical tests of smooth silver-plated retention pins in amalgam. Galindo, Y., McLachlan, K., Kasloff, Z. J. Dent. Res. (1980) [Pubmed]
  3. Epiphyseal plate shear strength in rats treated with a diphosphonate. Spengler, D.M., Evans, R., Baylink, D.J., Spolek, G.A. Proc. Soc. Exp. Biol. Med. (1980) [Pubmed]
  4. Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Silverman, B.M., Wieghaus, K.A., Schwartz, J. Langmuir : the ACS journal of surfaces and colloids. (2005) [Pubmed]
  5. Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Li, H., Khor, K.A., Cheang, P. Biomaterials (2002) [Pubmed]
  6. Comparison of plasma-sprayed hydroxyapatite coatings and hydroxyapatite/tricalcium phosphate composite coatings: in vivo study. Lee, T.M., Wang, B.C., Yang, Y.C., Chang, E., Yang, C.Y. J. Biomed. Mater. Res. (2001) [Pubmed]
  7. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. Feighan, J.E., Goldberg, V.M., Davy, D., Parr, J.A., Stevenson, S. The Journal of bone and joint surgery. American volume. (1995) [Pubmed]
  8. An evaluation of skeletal attachment to LTI pyrolytic carbon, porous titanium, and carbon-coated porous titanium implants. Anderson, R.C., Cook, S.D., Weinstein, A.M., Haddad, R.J. Clin. Orthop. Relat. Res. (1984) [Pubmed]
  9. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. Buser, D., Nydegger, T., Oxland, T., Cochran, D.L., Schenk, R.K., Hirt, H.P., Snétivy, D., Nolte, L.P. J. Biomed. Mater. Res. (1999) [Pubmed]
  10. Biomechanical and histological analysis of an HA coated, arc deposited CPTi canine hip prosthesis. Walenciak, M.T., Zimmerman, M.C., Harten, R.D., Ricci, J.L., Stamer, D.T. J. Biomed. Mater. Res. (1996) [Pubmed]
  11. Shear strength after ethylenediaminetetraacetic acid conditioning of dentin. Cederlund, A., Jonsson, B., Blomlöf, J. Acta Odontol. Scand. (2001) [Pubmed]
  12. Influence of biomaterial surface texture on bone ingrowth in the rabbit femur. Friedman, R.J., An, Y.H., Ming, J., Draughn, R.A., Bauer, T.W. J. Orthop. Res. (1996) [Pubmed]
  13. Effect of surface roughness of hydroxyapatite-coated titanium on the bone-implant interface shear strength. Hayashi, K., Inadome, T., Tsumura, H., Nakashima, Y., Sugioka, Y. Biomaterials (1994) [Pubmed]
  14. In vivo evaluation of the bond strength of adhesive 4-META/MMA-TBB bone cement under weight-bearing conditions. Sakai, T., Morita, S., Shinomiya, K., Watanabe, A., Nakabayashi, N., Ishihara, K. J. Biomed. Mater. Res. (2000) [Pubmed]
  15. Comparison of bone-implant interface shear strength of hydroxyapatite-coated and alumina-coated metal implants. Inadome, T., Hayashi, K., Nakashima, Y., Tsumura, H., Sugioka, Y. J. Biomed. Mater. Res. (1995) [Pubmed]
  16. The effect of a silane coupling agent on the bond strength of bone cement and cobalt-chrome alloy. Yerby, S.A., Paal, A.F., Young, P.M., Beaupré, G.S., Ohashi, K.L., Goodman, S.B. J. Biomed. Mater. Res. (2000) [Pubmed]
  17. Characterization of wet masses of pharmaceutical powders by triaxial compression test. Li, J.X., Zhou, Y., Wu, X.Y., Odidi, I., Odidi, A. Journal of pharmaceutical sciences. (2000) [Pubmed]
  18. Quantitative evaluation of cell attachment to glass, polystyrene, and fibronectin- or collagen-coated polystyrene by measurement of cell adhesive shear force and cell detachment energy. Yamamoto, A., Mishima, S., Maruyama, N., Sumita, M. J. Biomed. Mater. Res. (2000) [Pubmed]
  19. Dentin shear strength: effects of tubule orientation and intratooth location. Watanabe, L.G., Marshall, G.W., Marshall, S.J. Dental materials : official publication of the Academy of Dental Materials. (1996) [Pubmed]
  20. Retention and shear bond strength of two post systems. Stockton, L.W., Williams, P.T. Operative dentistry. (1999) [Pubmed]
  21. Effects of bone morphogenetic protein-2 and hyaluronic acid on the osseointegration of hydroxyapatite-coated implants: an experimental study in sheep. Aebli, N., Stich, H., Schawalder, P., Theis, J.C., Krebs, J. Journal of biomedical materials research. Part A. (2005) [Pubmed]
  22. The shear strength of polymethyl methacrylate bonded to titanium partial denture framework material. May, K.B., Russell, M.M., Razzoog, M.E., Lang, B.R. The Journal of prosthetic dentistry. (1993) [Pubmed]
 
WikiGenes - Universities