The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Pyrobaculum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pyrobaculum

 

High impact information on Pyrobaculum

  • We now describe the first member of a fifth UDG family, Pa-UDGb from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum, the active site of which lacks the polar residue that was hitherto thought to be essential for catalysis [4].
  • We determined and annotated the complete 2.2-megabase genome sequence of Pyrobaculum aerophilum, a facultatively aerobic nitrate-reducing hyperthermophilic (T(opt) = 100 degrees C) crenarchaeon [5].
  • An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum [6].
  • However, they differ in that the (lone) 16S rRNA gene of Pyrobaculum aerophilum contains a 713-bp intron not seen in the corresponding gene of Pyrobaculum islandicum [6].
  • The first reported crystal structure of a PIN domain (open reading frame PAE2754, derived from the crenarchaeon, Pyrobaculum aerophilum) has been determined to 2.5 A resolution and is presented here [7].
 

Biological context of Pyrobaculum

  • In our previous studies, we could show that the crenarchaeon Pyrobaculum aerophilum has at least three uracil-DNA glycosylases, Pa-UDGa, Pa-UDGb, and Pa-MIG, that can initiate the BER process by catalyzing the removal of uracil residues arising through the spontaneous deamination of cytosines [8].
  • As part of a structural genomics project, we have determined the 2.0 A structure of the E1beta subunit of pyruvate dehydrogenase from Pyrobaculum aerophilum (PA), a thermophilic archaeon [9].
  • Biochemical properties and regulated gene expression of the superoxide dismutase from the facultatively aerobic hyperthermophile Pyrobaculum calidifontis [10].
  • In the crenarchaeon Pyrobaculum aerophylum, in which no homologue of this methyltransferase is found, a box C/D guide sRNP insures the ribose methylation of C56 [11].
  • The intron-encoded proteins of P. oguniense TE7(T) and Thermoproteus sp. IC-062 are cognate with the proteins encoded by introns inserted at the same position in other Pyrobaculum/ Thermoproteus strains and phylotypes [12].
 

Associations of Pyrobaculum with chemical compounds

  • Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum [13].
  • Dye-linked D-proline dehydrogenase from hyperthermophilic archaeon Pyrobaculum islandicum is a novel FAD-dependent amino acid dehydrogenase [14].
  • A new archaeal isolate has been reported that is capable of growing at up to 121 degrees C. The hyperthermophile, dubbed strain 121, grows chemoautotrophically using formate as an electron donor and FeIII as an electron acceptor and is closely related to members of the archaeal genera Pyrodictium and Pyrobaculum [15].
  • 3D structure and significance of the GPhiXXG helix packing motif in tetramers of the E1beta subunit of pyruvate dehydrogenase from the archeon Pyrobaculum aerophilum [9].
  • The crystal structure of a dual-specificity phosphoglucose/phosphomannose isomerase from the crenarchaeon Pyrobaculum aerophilum (PaPGI/PMI) has been determined in complex with glucose 6-phosphate at 1.16 A resolution and with fructose 6-phosphate at 1.5 A resolution [16].
 

Gene context of Pyrobaculum

References

  1. Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels. Kaper, T., Talik, B., Ettema, T.J., Bos, H., van der Maarel, M.J., Dijkhuizen, L. Appl. Environ. Microbiol. (2005) [Pubmed]
  2. Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. Cottrell, M.T., Cary, S.C. Appl. Environ. Microbiol. (1999) [Pubmed]
  3. Uracil-DNA glycosylase activities in hyperthermophilic micro-organisms. Koulis, A., Cowan, D.A., Pearl, L.H., Savva, R. FEMS Microbiol. Lett. (1996) [Pubmed]
  4. A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. Sartori, A.A., Fitz-Gibbon, S., Yang, H., Miller, J.H., Jiricny, J. EMBO J. (2002) [Pubmed]
  5. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Fitz-Gibbon, S.T., Ladner, H., Kim, U.J., Stetter, K.O., Simon, M.I., Miller, J.H. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  6. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum. Burggraf, S., Larsen, N., Woese, C.R., Stetter, K.O. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  7. Distant structural homology leads to the functional characterization of an archaeal PIN domain as an exonuclease. Arcus, V.L., Bäckbro, K., Roos, A., Daniel, E.L., Baker, E.N. J. Biol. Chem. (2004) [Pubmed]
  8. Enzymology of base excision repair in the hyperthermophilic archaeon Pyrobaculum aerophilum. Sartori, A.A., Jiricny, J. J. Biol. Chem. (2003) [Pubmed]
  9. 3D structure and significance of the GPhiXXG helix packing motif in tetramers of the E1beta subunit of pyruvate dehydrogenase from the archeon Pyrobaculum aerophilum. Kleiger, G., Perry, J., Eisenberg, D. Biochemistry (2001) [Pubmed]
  10. Biochemical properties and regulated gene expression of the superoxide dismutase from the facultatively aerobic hyperthermophile Pyrobaculum calidifontis. Amo, T., Atomi, H., Imanaka, T. J. Bacteriol. (2003) [Pubmed]
  11. Two different mechanisms for tRNA ribose methylation in Archaea: a short survey. Clouet-d'Orval, B., Gaspin, C., Mougin, A. Biochimie (2005) [Pubmed]
  12. Distribution of 16S rRNA introns among the family Thermoproteaceae and their evolutionary implications. Itoh, T., Nomura, N., Sako, Y. Extremophiles (2003) [Pubmed]
  13. Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum. Sartori, A.A., Schär, P., Fitz-Gibbon, S., Miller, J.H., Jiricny, J. J. Biol. Chem. (2001) [Pubmed]
  14. Dye-linked D-proline dehydrogenase from hyperthermophilic archaeon Pyrobaculum islandicum is a novel FAD-dependent amino acid dehydrogenase. Satomura, T., Kawakami, R., Sakuraba, H., Ohshima, T. J. Biol. Chem. (2002) [Pubmed]
  15. The upper temperature of life--where do we draw the line? Cowen, D.A. Trends Microbiol. (2004) [Pubmed]
  16. Structural basis for phosphomannose isomerase activity in phosphoglucose isomerase from Pyrobaculum aerophilum: a subtle difference between distantly related enzymes. Swan, M.K., Hansen, T., Schönheit, P., Davies, C. Biochemistry (2004) [Pubmed]
  17. Direct interaction between uracil-DNA glycosylase and a proliferating cell nuclear antigen homolog in the crenarchaeon Pyrobaculum aerophilum. Yang, H., Chiang, J.H., Fitz-Gibbon, S., Lebel, M., Sartori, A.A., Jiricny, J., Slupska, M.M., Miller, J.H. J. Biol. Chem. (2002) [Pubmed]
  18. Unstructured RNA Is a Substrate for tRNase Z. Shibata, H.S., Minagawa, A., Takaku, H., Takagi, M., Nashimoto, M. Biochemistry (2006) [Pubmed]
  19. An iron-sulfur cluster in the family 4 uracil-DNA glycosylases. Hinks, J.A., Evans, M.C., De Miguel, Y., Sartori, A.A., Jiricny, J., Pearl, L.H. J. Biol. Chem. (2002) [Pubmed]
  20. The first crystal structure of hyperthermostable NAD-dependent glutamate dehydrogenase from Pyrobaculum islandicum. Bhuiya, M.W., Sakuraba, H., Ohshima, T., Imagawa, T., Katunuma, N., Tsuge, H. J. Mol. Biol. (2005) [Pubmed]
 
WikiGenes - Universities