The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Sulfolobus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sulfolobus

  • We heterologously overproduced a hyperthermostable archaeal low potential (E(m) = -62 mV) Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus strain P-1 and its variants in Escherichia coli to examine the influence of ligand substitutions on the properties of the [2Fe-2S] cluster [1].
  • Reconstitution of the leucine transport system of Lactococcus lactis into liposomes composed of membrane-spanning lipids from Sulfolobus acidocaldarius [2].
  • Limited proteolysis with trypsin of IGPS from both Sulfolobus solfataricus (sIGPS) and Thermotoga maritima (tIGPS) removes about 25 N-terminal residues and one of the two extra helices contained therein [3].
  • A plasmid able to transform and to be stably maintained both in Sulfolobus solfataricus and in Escherichia coli was constructed by insertion into an E. coli plasmid of the autonomously replicating sequence of the virus particle SSV1 and a suitable mutant of the hph (hygromycin phosphotransferase) gene as the transformation marker [4].
  • To further study the metabolism of polyP in Archaea, we followed the previously published purification procedure for a glycogen-bound protein of 57 kDa with PPK as well as glycosyl transferase (GT) activities from Sulfolobus acidocaldarius (R. Skórko, J. Osipiuk, and K. O. Stetter, J. Bacteriol. 171:5162-5164, 1989) [5].
 

High impact information on Sulfolobus

  • Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) is a DinB homolog that belongs to the recently described Y-family of DNA polymerases, which are best characterized by their low-fidelity synthesis on undamaged DNA templates and propensity to traverse normally replication-blocking lesions [6].
  • We show here that a strain of a novel Sulfolobus species, S. ambivalens, is alternatively able to live by an anaerobic mode of chemolithoautotrophy, also using CO2 as the sole carbon source, but using reduction of S(0) with H2, yielding H2S as the energy source [7].
  • We identified homologs of snoRNA genes in both branches of the Archaea. Eighteen small sno-like RNAs (sRNAs) were cloned from the archaeon Sulfolobus acidocaldarius by coimmunoprecipitation with archaeal fibrillarin and NOP56, the homologs of eukaryotic snoRNA-associated proteins [8].
  • An RNA-containing endonuclease that catalyzes the excision and maturation of the 16S ribosomal RNA (rRNA) from the rRNA primary transcript (pre-rRNA) in the hyperthermophilic archaeon Sulfolobus acidocaldarius has been characterized [9].
  • The lipids of nine different methanogenic bacterial strains are comprised of diphytanyl glycerol diethers, previously known only in extremely halophilic bacterial, as well as dibiphytanyl diglycerol tetraethers, known formerly only in the extremely thermoacidophilic bacteria Thermoplasma and Sulfolobus [10].
 

Chemical compound and disease context of Sulfolobus

 

Biological context of Sulfolobus

  • To test whether this occurs, the intron-containing 23S rRNA gene of the archaeal hyperthermophile Desulfurococcus mobilis, carried on nonreplicating bacterial vectors, was electroporated into an intron- culture of Sulfolobus acidocaldarius [16].
  • Nucleotide sequence of the gene for a 74 kDa DNA polymerase from the archaeon Sulfolobus solfataricus [17].
  • Greatly increased levels of lacS mRNA were detected in Northern analyses, demonstrating that this reporter gene system is suitable for the study of regulated promoters in Sulfolobus and that the vector can also be used for the high-level expression of genes from hyperthermophilic archaea [12].
  • Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus [18].
  • Thermodynamics and kinetics of unfolding of the thermostable trimeric adenylate kinase from the archaeon Sulfolobus acidocaldarius [19].
 

Anatomical context of Sulfolobus

 

Associations of Sulfolobus with chemical compounds

  • The homology between the sox gene products and their mitochondrial counterparts suggests that energy conservation coupled to the quinol oxidation catalysed either by the Sulfolobus oxidase or two mitochondrial respiratory enzymes may have a similar mechanism [22].
  • High positive supercoiling in vitro catalyzed by an ATP and polyethylene glycol-stimulated topoisomerase from Sulfolobus acidocaldarius [23].
  • The crystal structure of anthranilate synthase from Sulfolobus solfataricus: functional implications [24].
  • The hyperthermophilic Archaeon Sulfolobus solfataricus metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway [25].
  • Archaebacterial Sulfolobus acidocaldarius geranylgeranyl-diphosphate (GGPP) synthase (EC 2.5.1.29) catalyzes consecutive condensations of isopentenyl diphosphate with allylic diphosphates to produce GGPP which is the important precursor of archaebacterial ether-linked lipids [26].
 

Gene context of Sulfolobus

  • Consistent with this, we demonstrate that S. shibatae TFB promotes the binding of S. shibatae TBP to the A-box element of the Sulfolobus 16S/23S rRNA gene [27].
  • Genes encoding homologs of the related eucaryal RNAP subunits A12.2/B12.6 and also homologs of eucaryal transcription elongation factors of the TFIIS family have been detected in Sulfolobus acidocaldarius and Thermococcus celer [28].
  • Because this bypass is expected to be highly mutagenic because of loss of base coding potential, here we quantify the efficiency and the specificity of AP site bypass by two Y family TLS enzymes, Sulfolobus solfataricus DNA polymerase 4 (Dpo4) and human DNA polymerase eta (Pol eta) [29].
  • Its catalytic efficiency is comparable with that reported for the archaeal Sulfolobus solfataricus Pth2 and higher than that of the bacterial E. coli Pth [30].
  • Unexpectedly, Sulfolobus XPF is only active in the presence of the sliding clamp PCNA, which is a heterotrimer in this organism [31].
 

Analytical, diagnostic and therapeutic context of Sulfolobus

 

 

References

  1. Engineering a three-cysteine, one-histidine ligand environment into a new hyperthermophilic archaeal Rieske-type [2Fe-2S] ferredoxin from Sulfolobus solfataricus. Kounosu, A., Li, Z., Cosper, N.J., Shokes, J.E., Scott, R.A., Imai, T., Urushiyama, A., Iwasaki, T. J. Biol. Chem. (2004) [Pubmed]
  2. Reconstitution of the leucine transport system of Lactococcus lactis into liposomes composed of membrane-spanning lipids from Sulfolobus acidocaldarius. In't Veld, G., Elferink, M.G., Driessen, A.J., Konings, W.N. Biochemistry (1992) [Pubmed]
  3. Role of the N-terminal extension of the (betaalpha)8-barrel enzyme indole-3-glycerol phosphate synthase for its fold, stability, and catalytic activity. Schneider, B., Knöchel, T., Darimont, B., Hennig, M., Dietrich, S., Babinger, K., Kirschner, K., Sterner, R. Biochemistry (2005) [Pubmed]
  4. An autonomously replicating transforming vector for Sulfolobus solfataricus. Cannio, R., Contursi, P., Rossi, M., Bartolucci, S. J. Bacteriol. (1998) [Pubmed]
  5. The glycogen-bound polyphosphate kinase from Sulfolobus acidocaldarius is actually a glycogen synthase. Cardona, S., Remonsellez, F., Guiliani, N., Jerez, C.A. Appl. Environ. Microbiol. (2001) [Pubmed]
  6. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Ling, H., Boudsocq, F., Woodgate, R., Yang, W. Cell (2001) [Pubmed]
  7. Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Zillig, W., Yeats, S., Holz, I., Böck, A., Gropp, F., Rettenberger, M., Lutz, S. Nature (1985) [Pubmed]
  8. Homologs of small nucleolar RNAs in Archaea. Omer, A.D., Lowe, T.M., Russell, A.G., Ebhardt, H., Eddy, S.R., Dennis, P.P. Science (2000) [Pubmed]
  9. Ribosomal RNA precursor processing by a eukaryotic U3 small nucleolar RNA-like molecule in an archaeon. Potter, S., Durovic, P., Dennis, P.P. Science (1995) [Pubmed]
  10. Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Tornabene, T.G., Langworthy, T.A. Science (1979) [Pubmed]
  11. Protein topography of Sulfolobus solfataricus ribosomes by cross-linking with 2-iminothiolane. Sso L12e, Sso L10e, and Sso L11e are neighbors. Casiano, C., Traut, R.R. J. Biol. Chem. (1991) [Pubmed]
  12. A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Jonuscheit, M., Martusewitsch, E., Stedman, K.M., Schleper, C. Mol. Microbiol. (2003) [Pubmed]
  13. Crystal structure of purine nucleoside phosphorylase from Thermus thermophilus. Tahirov, T.H., Inagaki, E., Ohshima, N., Kitao, T., Kuroishi, C., Ukita, Y., Takio, K., Kobayashi, M., Kuramitsu, S., Yokoyama, S., Miyano, M. J. Mol. Biol. (2004) [Pubmed]
  14. Guanidine-induced denaturation of beta-glycosidase from Sulfolobus solfataricus expressed in Escherichia coli. Catanzano, F., Graziano, G., De Paola, B., Barone, G., D'Auria, S., Rossi, M., Nucci, R. Biochemistry (1998) [Pubmed]
  15. Structure-activity relationships of sparsomycin and its analogues. Inhibition of peptide bond formation in cell-free systems and of L1210 and bacterial cell growth. van den Broek, L.A., Liskamp, R.M., Colstee, J.H., Lelieveld, P., Remacha, M., Vázquez, D., Ballesta, J.P., Ottenheijm, H.C. J. Med. Chem. (1987) [Pubmed]
  16. Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius. Aagaard, C., Dalgaard, J.Z., Garrett, R.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  17. Nucleotide sequence of the gene for a 74 kDa DNA polymerase from the archaeon Sulfolobus solfataricus. Prangishvili, D., Klenk, H.P. Nucleic Acids Res. (1993) [Pubmed]
  18. Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus. Peng, X., Holz, I., Zillig, W., Garrett, R.A., She, Q. J. Mol. Biol. (2000) [Pubmed]
  19. Thermodynamics and kinetics of unfolding of the thermostable trimeric adenylate kinase from the archaeon Sulfolobus acidocaldarius. Backmann, J., Schäfer, G., Wyns, L., Bönisch, H. J. Mol. Biol. (1998) [Pubmed]
  20. Characterization and purification of a membrane-bound archaebacterial pyrophosphatase from Sulfolobus acidocaldarius. Meyer, W., Schäfer, G. Eur. J. Biochem. (1992) [Pubmed]
  21. Gene expression of a thermostable beta-galactosidase in mammalian cells and its application in assays of eukaryotic promoter activity. Cannio, R., de Pascale, D., Rossi, M., Bartolucci, S. Biotechnol. Appl. Biochem. (1994) [Pubmed]
  22. An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes. Lübben, M., Kolmerer, B., Saraste, M. EMBO J. (1992) [Pubmed]
  23. High positive supercoiling in vitro catalyzed by an ATP and polyethylene glycol-stimulated topoisomerase from Sulfolobus acidocaldarius. Forterre, P., Mirambeau, G., Jaxel, C., Nadal, M., Duguet, M. EMBO J. (1985) [Pubmed]
  24. The crystal structure of anthranilate synthase from Sulfolobus solfataricus: functional implications. Knöchel, T., Ivens, A., Hester, G., Gonzalez, A., Bauerle, R., Wilmanns, M., Kirschner, K., Jansonius, J.N. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  25. Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase. Lamble, H.J., Heyer, N.I., Bull, S.D., Hough, D.W., Danson, M.J. J. Biol. Chem. (2003) [Pubmed]
  26. Archaebacterial ether-linked lipid biosynthetic gene. Expression cloning, sequencing, and characterization of geranylgeranyl-diphosphate synthase. Ohnuma, S., Suzuki, M., Nishino, T. J. Biol. Chem. (1994) [Pubmed]
  27. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae. Qureshi, S.A., Khoo, B., Baumann, P., Jackson, S.P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  28. Transcription in archaea: similarity to that in eucarya. Langer, D., Hain, J., Thuriaux, P., Zillig, W. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  29. The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4. Kokoska, R.J., McCulloch, S.D., Kunkel, T.A. J. Biol. Chem. (2003) [Pubmed]
  30. Crystal structure of a human peptidyl-tRNA hydrolase reveals a new fold and suggests basis for a bifunctional activity. De Pereda, J.M., Waas, W.F., Jan, Y., Ruoslahti, E., Schimmel, P., Pascual, J. J. Biol. Chem. (2004) [Pubmed]
  31. An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Roberts, J.A., Bell, S.D., White, M.F. Mol. Microbiol. (2003) [Pubmed]
  32. An exosome-like complex in Sulfolobus solfataricus. Evguenieva-Hackenberg, E., Walter, P., Hochleitner, E., Lottspeich, F., Klug, G. EMBO Rep. (2003) [Pubmed]
  33. Crystal structure of T state aspartate carbamoyltransferase of the hyperthermophilic archaeon Sulfolobus acidocaldarius. De Vos, D., Van Petegem, F., Remaut, H., Legrain, C., Glansdorff, N., Van Beeumen, J.J. J. Mol. Biol. (2004) [Pubmed]
  34. Thermostable NAD(+)-dependent alcohol dehydrogenase from Sulfolobus solfataricus: gene and protein sequence determination and relationship to other alcohol dehydrogenases. Ammendola, S., Raia, C.A., Caruso, C., Camardella, L., D'Auria, S., De Rosa, M., Rossi, M. Biochemistry (1992) [Pubmed]
  35. The role of the salt concentration, proton, and phosphate binding on the thermal stability of wild and cloned DNA-binding protein Sso7d from Sulfolobus solfataricus. Todorova, R., Atanasov, B. Int. J. Biol. Macromol. (2004) [Pubmed]
 
WikiGenes - Universities