The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Thermococcus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Thermococcus

  • The DNA polymerase gene from the Archaea Thermococcus litoralis has been cloned and expressed in Escherichia coli [1].
  • DNA synthesis fidelities of two thermostable DNA polymerases, Thermus aquaticus (Taq) and Thermococcus litoralis (Tli, also known as Vent), and a non-thermostable enzyme, a modified T7 DNA polymerase (Sequenase), were determined by analyzing polymerase chain reaction (PCR) products using denaturing gradient gel electrophoresis (DGGE) [2].
  • In the alignment of the amino acid sequence with those of mesophilic Clostridium symbiosum NAD-dependent GluDH and hyperthermophilic NADP-dependent enzymes from Thermococcus profundus and Pyrococcus furiosus, substitutions in the residues involved in dinucleotide binding were observed [3].
  • Small heat shock protein of a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, exists as a spherical 24 mer and its expression is highly induced under heat-stress conditions [4].
 

High impact information on Thermococcus

  • Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis [5].
  • Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius [6].
  • We have carried out homology-based modeling and direct structure comparison on the hexameric glutamate dehydrogenases from the hyperthermophiles Pyrococcus furiosus and Thermococcus litoralis whose optimal growth temperatures are 100 degreesC and 88 degreesC, respectively, to determine key stabilizing features [7].
  • Six substitutions in the 3'-5' exonuclease motif I were constructed in an attempt to reduce the 3'-5' exonuclease activity of Thermococcus sp. 9 degrees N-7 DNA polymerase [8].
  • We have developed a simplified procedure for the ligation-mediated polymerase chain reaction (LMPCR) using Thermococcus litoralis DNA polymerase (Vent DNA polymerase) [9].
 

Chemical compound and disease context of Thermococcus

 

Biological context of Thermococcus

 

Associations of Thermococcus with chemical compounds

 

Gene context of Thermococcus

  • This Thermococcus FKBP (TcFK) belonged to the smaller archaeal FKBP [22].
  • This study focused on the first characterization of the enzymatic properties and expression profile of an archaeal PCK from the hyperthermophilic archaeon Thermococcus kodakaraensis (PckTk) [23].
  • Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis [24].
  • The Tk-ptp gene encoding a protein tyrosine phosphatase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 was cloned and biochemical characteristics of the recombinant protein (Tk-PTP) were examined [25].
  • Phenylalanyl-tRNA synthetase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 (Tk-PheRS) was cloned [26].
 

Analytical, diagnostic and therapeutic context of Thermococcus

References

  1. Intervening sequences in an Archaea DNA polymerase gene. Perler, F.B., Comb, D.G., Jack, W.E., Moran, L.S., Qiang, B., Kucera, R.B., Benner, J., Slatko, B.E., Nwankwo, D.O., Hempstead, S.K. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  2. Fidelity of Thermococcus litoralis DNA polymerase (Vent) in PCR determined by denaturing gradient gel electrophoresis. Cariello, N.F., Swenberg, J.A., Skopek, T.R. Nucleic Acids Res. (1991) [Pubmed]
  3. The NAD-dependent glutamate dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum: cloning, sequencing, and expression of the enzyme gene(1). Kujo, C., Sakuraba, H., Nunoura, N., Ohshima, T. Biochim. Biophys. Acta (1999) [Pubmed]
  4. Small heat shock protein of a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, exists as a spherical 24 mer and its expression is highly induced under heat-stress conditions. Usui, K., Yoshida, T., Maruyama, T., Yohda, M. J. Biosci. Bioeng. (2001) [Pubmed]
  5. Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. Diederichs, K., Diez, J., Greller, G., Müller, C., Breed, J., Schnell, C., Vonrhein, C., Boos, W., Welte, W. EMBO J. (2000) [Pubmed]
  6. Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius. Hopfner, K.P., Eichinger, A., Engh, R.A., Laue, F., Ankenbauer, W., Huber, R., Angerer, B. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  7. Protein thermostability above 100 degreesC: a key role for ionic interactions. Vetriani, C., Maeder, D.L., Tolliday, N., Yip, K.S., Stillman, T.J., Britton, K.L., Rice, D.W., Klump, H.H., Robb, F.T. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  8. Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp. 9 degrees N-7 and mutations affecting 3'-5' exonuclease activity. Southworth, M.W., Kong, H., Kucera, R.B., Ware, J., Jannasch, H.W., Perler, F.B. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  9. Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting. Garrity, P.A., Wold, B.J. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  10. Vitamin contents of archaebacteria. Noll, K.M., Barber, T.S. J. Bacteriol. (1988) [Pubmed]
  11. High level expression of Thermococcus litoralis 4-alpha-glucanotransferase in a soluble form in Escherichia coli with a novel expression system involving minor arginine tRNAs and GroELS. Imamura, H., Jeon, B., Wakagi, T., Matsuzawa, H. FEBS Lett. (1999) [Pubmed]
  12. Anthranilate synthase without an LLES motif from a hyperthermophilic archaeon is inhibited by tryptophan. Tang, X.F., Ezaki, S., Atomi, H., Imanaka, T. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  13. A novel neutral amino acid transporter from the hyperthermophilic archaeon Thermococcus sp. KS-1. Akahane, S., Kamata, H., Yagisawa, H., Hirata, H. J. Biochem. (2003) [Pubmed]
  14. TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon Thermococcus litoralis. Lee, S.J., Engelmann, A., Horlacher, R., Qu, Q., Vierke, G., Hebbeln, C., Thomm, M., Boos, W. J. Biol. Chem. (2003) [Pubmed]
  15. Nucleotide sequence of the gene for elongation factor EF-1 alpha from the extreme thermophilic archaebacterium Thermococcus celer. Auer, J., Spicker, G., Böck, A. Nucleic Acids Res. (1990) [Pubmed]
  16. Large-scale domain movements and hydration structure changes in the active-site cleft of unligated glutamate dehydrogenase from Thermococcus profundus studied by cryogenic X-ray crystal structure analysis and small-angle X-ray scattering. Nakasako, M., Fujisawa, T., Adachi, S., Kudo, T., Higuchi, S. Biochemistry (2001) [Pubmed]
  17. Characterization of a thermophilic ATP-dependent DNA ligase from the euryarchaeon Pyrococcus horikoshii. Keppetipola, N., Shuman, S. J. Bacteriol. (2005) [Pubmed]
  18. Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. A role for tungsten in peptide catabolism. Mukund, S., Adams, M.W. J. Biol. Chem. (1993) [Pubmed]
  19. Crystal structures of 4-alpha-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. Imamura, H., Fushinobu, S., Yamamoto, M., Kumasaka, T., Jeon, B.S., Wakagi, T., Matsuzawa, H. J. Biol. Chem. (2003) [Pubmed]
  20. Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic Archaea. Johnson, J.L., Rajagopalan, K.V., Mukund, S., Adams, M.W. J. Biol. Chem. (1993) [Pubmed]
  21. Concerted action of diacetylchitobiose deacetylase and exo-beta-D-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Tanaka, T., Fukui, T., Fujiwara, S., Atomi, H., Imanaka, T. J. Biol. Chem. (2004) [Pubmed]
  22. FKBP-type peptidyl-prolyl cis-trans isomerase from a sulfur-dependent hyperthermophilic archaeon, Thermococcus sp. KS-1. Iida, T., Furutani, M., Nishida, F., Maruyama, T. Gene (1998) [Pubmed]
  23. First characterization of an archaeal GTP-dependent phosphoenolpyruvate carboxykinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Fukuda, W., Fukui, T., Atomi, H., Imanaka, T. J. Bacteriol. (2004) [Pubmed]
  24. Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis. Rashid, N., Imanaka, H., Fukui, T., Atomi, H., Imanaka, T. J. Bacteriol. (2004) [Pubmed]
  25. Tk-PTP, protein tyrosine/serine phosphatase from hyperthermophilic archaeon Thermococcus kodakaraensis KOD1: enzymatic characteristics and identification of its substrate proteins. Jeon, S.J., Fujiwara, S., Takagi, M., Tanaka, T., Imanaka, T. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  26. Genetic, enzymatic, and structural analyses of phenylalanyl-tRNA synthetase from Thermococcus kodakaraensis KOD1. Shiraki, K., Tsuji, M., Hashimoto, Y., Fujimoto, K., Fujiwara, S., Takagi, M., Imanaka, T. J. Biochem. (2003) [Pubmed]
  27. Spectroscopic studies of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Thermococcus litoralis. Dhawan, I.K., Roy, R., Koehler, B.P., Mukund, S., Adams, M.W., Johnson, M.K. J. Biol. Inorg. Chem. (2000) [Pubmed]
  28. Cloning, expression, and characterization of aminopeptidase P from the hyperthermophilic archaeon Thermococcus sp. strain NA1. Lee, H.S., Kim, Y.J., Bae, S.S., Jeon, J.H., Lim, J.K., Jeong, B.C., Kang, S.G., Lee, J.H. Appl. Environ. Microbiol. (2006) [Pubmed]
  29. Crystallization of the glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Sedelnikova, S.E., Yip, K.S., Stillman, T.J., Ma, K., Adams, M.W., Robb, F.T., Rice, D.W. Acta Crystallogr. D Biol. Crystallogr. (1996) [Pubmed]
  30. Interaction of TIP26 from a hyperthermophilic archaeon with TFB/TBP/DNA ternary complex. Matsuda, T., Fujikawa, M., Haruki, M., Tang, X.F., Ezaki, S., Imanaka, T., Morikawa, M., Kanaya, S. Extremophiles (2001) [Pubmed]
  31. Optimisation of growth conditions for continuous culture of the hyperthermophilic archaeon Thermococcus hydrothermalis and development of sulphur-free defined and minimal media. Postec, A., Pignet, P., Cueff-Gauchard, V., Schmitt, A., Querellou, J., Godfroy, A. Res. Microbiol. (2005) [Pubmed]
 
WikiGenes - Universities