The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

tfdA  -  ORF34

Ralstonia eutropha JMP134

This record was discontinued.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of tfdA

 

High impact information on tfdA

  • A sharp increase in mRNA levels for tfdA, tfdCDEF-B, tfdDIICIIEIIFII-BII and tfdK was detected between 2 and 13 min after exposure to 2,4-D [4].
  • In vivo recombinants of pYG1010 and a cloned tfdS gene rescued the 2,4-D phenotype, indicating that TfdS is a positive regulator of tfdA expression, but not for tfdCDEF expression [5].
  • The plasmid genes specifying 2,4-D and 3-Cba catabolism are organized in three operons: tfdA, tfdB, and tfdCDEF [5].
  • The other recombinant plasmid (pJP4-FM) should harbor two copies of the tfdA gene but no copies of the tfd gene clusters [6].
  • Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil is quantitatively linked to the class III tfdA gene [7].
 

Chemical compound and disease context of tfdA

 

Biological context of tfdA

 

Associations of tfdA with chemical compounds

 

Other interactions of tfdA

  • Even more so, one complete ISJP4 plus its tfdA-tfdS intergenic remnant were sufficient to mediate transposition of intervening DNA [13].
 

Analytical, diagnostic and therapeutic context of tfdA

  • Quantitative PCR revealed growth in the tfdA-containing bacterial community, from 500 genes g(-1) soil to approximately 3 x 10(4) genes g(-1) soil and to 7 x 10(5) genes g(-1) soil for topsoil initially added to 2.3 mg MCPA kg(-1) (dry weight) soil and 20 mg MCPA kg(-1) (dry weight) soil, respectively [7].

References

  1. Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. Streber, W.R., Timmis, K.N., Zenk, M.H. J. Bacteriol. (1987) [Pubmed]
  2. Purification and characterization of 2,4-dichlorophenoxyacetate/alpha-ketoglutarate dioxygenase. Fukumori, F., Hausinger, R.P. J. Biol. Chem. (1993) [Pubmed]
  3. 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Fulthorpe, R.R., McGowan, C., Maltseva, O.V., Holben, W.E., Tiedje, J.M. Appl. Environ. Microbiol. (1995) [Pubmed]
  4. Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2, 4-dichlorophenoxyacetate. Leveau, J.H., König, F., Füchslin, H., Werlen, C., Van Der Meer, J.R. Mol. Microbiol. (1999) [Pubmed]
  5. Genetic and molecular analysis of a regulatory region of the herbicide 2,4-dichlorophenoxyacetate catabolic plasmid pJP4. You, I.S., Ghosal, D. Mol. Microbiol. (1995) [Pubmed]
  6. Molecular and Population Analyses of a Recombination Event in the Catabolic Plasmid pJP4. Larraín-Linton, J., De la Iglesia, R., Melo, F., González, B. J. Bacteriol. (2006) [Pubmed]
  7. Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil is quantitatively linked to the class III tfdA gene. Baelum, J., Henriksen, T., Hansen, H.C., Jacobsen, C.S. Appl. Environ. Microbiol. (2006) [Pubmed]
  8. Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene in Alcaligenes eutrophus JMP134(pJP4). Perkins, E.J., Lurquin, P.F. J. Bacteriol. (1988) [Pubmed]
  9. Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase from Burkholderia sp. strain RASC. Suwa, Y., Wright, A.D., Fukimori, F., Nummy, K.A., Hausinger, R.P., Holben, W.E., Forney, L.J. Appl. Environ. Microbiol. (1996) [Pubmed]
  10. Analysis of duplicated gene sequences associated with tfdR and tfdS in Alcaligenes eutrophus JMP134. Matrubutham, U., Harker, A.R. J. Bacteriol. (1994) [Pubmed]
  11. Utilization of phenoxyacetic acid, by strains using either the ortho or meta cleavage of catechol during phenol degradation, after conjugal transfer of tfdA, the gene encoding a 2,4-dichlorophenoxyacetic acid/2-oxoglutarate dioxygenase. Radnoti de Lipthay, J., Barkay, T., Vekova, J., Sørensen, S.J. Appl. Microbiol. Biotechnol. (1999) [Pubmed]
  12. Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Kamagata, Y., Fulthorpe, R.R., Tamura, K., Takami, H., Forney, L.J., Tiedje, J.M. Appl. Environ. Microbiol. (1997) [Pubmed]
  13. Genetic characterization of insertion sequence ISJP4 on plasmid pJP4 from Ralstonia eutropha JMP134. Leveau, J.H., van der Meer, J.R. Gene (1997) [Pubmed]
 
WikiGenes - Universities