The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Sphingomonas

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sphingomonas

 

High impact information on Sphingomonas

  • The pathway for degradation of the xenobiotic pesticide pentachlorophenol in Sphingomonas chlorophenolica probably evolved in the past few decades by the recruitment of enzymes from two other catabolic pathways [6].
  • We demonstrate through equilibrium tetramer binding and antigen presentation assays with Valpha14i-positive NKT cell hybridomas that the Sphingomonas glycolipid alpha-galacturonosyl ceramide (GalA-GSL) is a NKT cell agonist that is significantly weaker than alpha-galactosylceramide (alpha-GalCer), the most potent known NKT agonist [7].
  • Respiratory administration of glycolipid antigens that specifically activate NKT cells (alpha-GalactosylCeramide and a Sphingomonas bacterial glycolipid) rapidly induced AHR and inflammation typically associated with protein allergen administration [8].
  • The Sphingomonas glycosphingolipids (GSLs) and sulfatide variants were shown to activate human NKT cells as measured by IL-4 and IFN-gamma secretion [9].
  • Several nonylphenol isomers with alpha-quaternary carbon atoms serve as growth substrates for Sphingomonas xenophaga Bayram, whereas isomers containing hydrogen atoms at the alpha-carbon do not [10].
 

Chemical compound and disease context of Sphingomonas

  • Bacterial glycolipids, alpha-galacturonosyl-ceramides from Sphingomonas wittichii, although structurally similar to alpha-GalCer, have significant differences in the sugar head group as well as the ceramide portion [9].
  • gamma-Hexachlorocyclohexane dehydrochlorinase (LinA) catalyzes the initial steps in the biotransformation of the important insecticide gamma-hexachlorocyclohexane (gamma-HCH) by the soil bacterium Sphingomonas paucimobilis UT26 [11].
  • A three-dimensional model for the N-terminal domain (residues 1-281) and C-terminal domain (residues 294-420) of the gallate dioxygenase from P. putida KT2440 was generated by comparison with the crystal structures of the large (LigB) and small (LigA) subunits of the protocatechuate 4,5-dioxygenase from Sphingomonas paucimobilis SYK-6 [12].
  • Here, we describe cloning of the FAAH gene from Sphingomonas paucimobilis, a sphingolipid- and 2-hydroxymyristic acid-rich bacterium [13].
  • A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain. Purification, characterization, cloning, and overproduction [14].
 

Biological context of Sphingomonas

 

Anatomical context of Sphingomonas

 

Gene context of Sphingomonas

 

Analytical, diagnostic and therapeutic context of Sphingomonas

References

  1. Enzymatic reaction of hydrogen peroxide-dependent peroxygenase cytochrome P450s: kinetic deuterium isotope effects and analyses by resonance Raman spectroscopy. Matsunaga, I., Yamada, A., Lee, D.S., Obayashi, E., Fujiwara, N., Kobayashi, K., Ogura, H., Shiro, Y. Biochemistry (2002) [Pubmed]
  2. Analysis of competition in soil among 2,4-dichlorophenoxyacetic acid-degrading bacteria. Ka, J.O., Holben, W.E., Tiedje, J.M. Appl. Environ. Microbiol. (1994) [Pubmed]
  3. Purification and characterization of a haloalkane dehalogenase of a new substrate class from a gamma-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Nagata, Y., Miyauchi, K., Damborsky, J., Manova, K., Ansorgova, A., Takagi, M. Appl. Environ. Microbiol. (1997) [Pubmed]
  4. Root nodule Bradyrhizobium spp. harbor tfdAalpha and cadA, homologous with genes encoding 2,4-dichlorophenoxyacetic acid-degrading proteins. Itoh, K., Tashiro, Y., Uobe, K., Kamagata, Y., Suyama, K., Yamamoto, H. Appl. Environ. Microbiol. (2004) [Pubmed]
  5. Mutational analysis of pcpA and its role in pentachlorophenol degradation by Sphingomonas (Flavobacterium) chlorophenolica ATCC 39723. Chanama, S., Crawford, R.L. Appl. Environ. Microbiol. (1997) [Pubmed]
  6. Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Copley, S.D. Trends Biochem. Sci. (2000) [Pubmed]
  7. Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Wu, D., Zajonc, D.M., Fujio, M., Sullivan, B.A., Kinjo, Y., Kronenberg, M., Wilson, I.A., Wong, C.H. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  8. Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Meyer, E.H., Goya, S., Akbari, O., Berry, G.J., Savage, P.B., Kronenberg, M., Nakayama, T., DeKruyff, R.H., Umetsu, D.T. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  9. Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Wu, D., Xing, G.W., Poles, M.A., Horowitz, A., Kinjo, Y., Sullivan, B., Bodmer-Narkevitch, V., Plettenburg, O., Kronenberg, M., Tsuji, M., Ho, D.D., Wong, C.H. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  10. A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram: ipso-hydroxylation and intramolecular rearrangement. Gabriel, F.L., Heidlberger, A., Rentsch, D., Giger, W., Guenther, K., Kohler, H.P. J. Biol. Chem. (2005) [Pubmed]
  11. Reaction mechanism and stereochemistry of gamma-hexachlorocyclohexane dehydrochlorinase LinA. Trantírek, L., Hynková, K., Nagata, Y., Murzin, A., Ansorgová, A., Sklenár, V., Damborský, J. J. Biol. Chem. (2001) [Pubmed]
  12. Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. Nogales, J., Canales, A., Jiménez-Barbero, J., García, J.L., Díaz, E. J. Biol. Chem. (2005) [Pubmed]
  13. Molecular cloning and expression of fatty acid alpha-hydroxylase from Sphingomonas paucimobilis. Matsunaga, I., Yokotani, N., Gotoh, O., Kusunose, E., Yamada, M., Ichihara, K. J. Biol. Chem. (1997) [Pubmed]
  14. A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain. Purification, characterization, cloning, and overproduction. Ikushiro, H., Hayashi, H., Kagamiyama, H. J. Biol. Chem. (2001) [Pubmed]
  15. Structure and function of a hypothetical Pseudomonas aeruginosa protein PA1167 classified into family PL-7: a novel alginate lyase with a beta-sandwich fold. Yamasaki, M., Moriwaki, S., Miyake, O., Hashimoto, W., Murata, K., Mikami, B. J. Biol. Chem. (2004) [Pubmed]
  16. A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1. Armengaud, J., Timmis, K.N., Wittich, R.M. J. Bacteriol. (1999) [Pubmed]
  17. Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains. Basta, T., Keck, A., Klein, J., Stolz, A. J. Bacteriol. (2004) [Pubmed]
  18. Requirement of a relatively high threshold level of Mg(2+) for cell growth of a rhizoplane bacterium, Sphingomonas yanoikuyae EC-S001. Hoo, H., Hashidoko, Y., Islam, M.T., Tahara, S. Appl. Environ. Microbiol. (2004) [Pubmed]
  19. 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Böltner, D., Moreno-Morillas, S., Ramos, J.L. Environ. Microbiol. (2005) [Pubmed]
  20. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Sriram, V., Du, W., Gervay-Hague, J., Brutkiewicz, R.R. Eur. J. Immunol. (2005) [Pubmed]
  21. Fluorescent methods to study DNA, RNA, proteins and cytoplasmic membrane polarization in the pentachlorophenol-mineralizing bacterium Sphingomonas sp. UG30 during nutrient starvation in water. Denich, T.J., Beaudette, L.A., Lee, H., Trevors, J.T. Journal of fluorescence. (2005) [Pubmed]
  22. Super-channel in bacteria: structural and functional aspects of a novel biosystem for the import and depolymerization of macromolecules. Hashimoto, W., Yamasaki, M., Itoh, T., Momma, K., Mikami, B., Murata, K. J. Biosci. Bioeng. (2004) [Pubmed]
  23. Fluoranthene-2,3- and -1,5-diones are novel products from the bacterial transformation of fluoranthene. Kazunga, C., Aitken, M.D., Gold, A., Sangaiah, R. Environ. Sci. Technol. (2001) [Pubmed]
  24. Diversity of carbazole-degrading bacteria having the car gene cluster: isolation of a novel gram-positive carbazole-degrading bacterium. Inoue, K., Habe, H., Yamane, H., Omori, T., Nojiri, H. FEMS Microbiol. Lett. (2005) [Pubmed]
  25. 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Fulthorpe, R.R., McGowan, C., Maltseva, O.V., Holben, W.E., Tiedje, J.M. Appl. Environ. Microbiol. (1995) [Pubmed]
  26. Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids. Peng, X., Shindo, K., Kanoh, K., Inomata, Y., Choi, S.K., Misawa, N. Appl. Microbiol. Biotechnol. (2005) [Pubmed]
  27. The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. Kawasaki, S., Moriguchi, R., Sekiya, K., Nakai, T., Ono, E., Kume, K., Kawahara, K. J. Bacteriol. (1994) [Pubmed]
  28. Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2. Sørensen, S.R., Ronen, Z., Aamand, J. Appl. Environ. Microbiol. (2002) [Pubmed]
  29. Use of monoclonal antibodies against dibenzo-p-dioxin degrading Sphingomonas sp. strain RW1. Thakur, I.S. Lett. Appl. Microbiol. (1996) [Pubmed]
 
WikiGenes - Universities