The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

HXT4  -  Hxt4p

Saccharomyces cerevisiae S288c

Synonyms: LGT1, Low-affinity glucose transporter HXT4, Low-affinity glucose transporter LGT1, RAG1, YHR092C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of HXT4

  • Emulsan is a polyanionic heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1 [1].
 

High impact information on HXT4

  • One of the two DNA bending wedges on Nhp6A and the analogous phenylalanine wedge at the DNA exit site of HMGB1 domain A were found to be essential for promoting RAG1/2-RSS complex formation [2].
  • In this study, we show that the HXT11 product, which allows glucose uptake in a glucose permease mutant (rag1) strain of Kluyveromyces lactis, is also involved in the pleiotropic drug resistance process [3].
  • Transcription of the yeast HXT2 and HXT4 genes, which encode glucose transporters, is induced only by low levels of glucose [4].
  • The HXT genes (HXT1 to HXT4) of the yeast Saccharomyces cerevisiae encode hexose transporters [5].
  • The function of another new member of the HXT superfamily, HXT4 (previously identified by its ability to suppress the snf3 delta phenotype; L. Bisson, personal communication), was revealed in experiments that deleted all possible combinations of the five members of the glucose transporter gene family [6].
 

Biological context of HXT4

 

Associations of HXT4 with chemical compounds

  • Functional characterization of the LGT1 gene product in S. cerevisiae revealed that it encodes a low-affinity transporter, able to mediate the uptake of glucose and fructose [12].
  • As a consequence of the solubilization of the emulsan capsule, RAG-1 cells became more hydrophobic, as determined by adherence to hexadecane [1].
 

Physical interactions of HXT4

  • Multicopy HXT4 increases both high and low affinity glucose transport in snf3 strains and increases low and high transport in wild-type strains [13].
 

Enzymatic interactions of HXT4

  • Deletion of the FRT1 gene in a K. lactis strain already deleted for its RAG1 and HGT1 hexose transporter genes completely prevented uptake of and growth with fructose but not with glucose [14].
 

Regulatory relationships of HXT4

 

Other interactions of HXT4

  • Overproduction of Gcr1p from an inducible promoter resulted in a 15-64% increase in transcription of HXT4, depending on the growth conditions [15].
  • We show that the dominant mutation GSF4-1, which impairs glucose repression of SUC2, results in a nonfunctional chimera of the transporters Hxt1p and Hxt4p [16].
  • The defect of the low-affinity component was found to be due to a block of transcription of the RAG1 gene by the hexokinase mutation [17].
  • Therefore, it seems that the enolase and a functional glycolytic flux are necessary for induction of expression of the Rag1 glucose permease in K. lactis [18].
  • In the absence of glucose, repression of LGT1 expression required the transcription factor Rgt1p [12].
 

Analytical, diagnostic and therapeutic context of HXT4

References

  1. Bacterial degradation of emulsan. Shoham, Y., Rosenberg, M., Rosenberg, E. Appl. Environ. Microbiol. (1983) [Pubmed]
  2. Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination. Dai, Y., Wong, B., Yen, Y.M., Oettinger, M.A., Kwon, J., Johnson, R.C. Mol. Cell. Biol. (2005) [Pubmed]
  3. Multiple-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters. Nourani, A., Wesolowski-Louvel, M., Delaveau, T., Jacq, C., Delahodde, A. Mol. Cell. Biol. (1997) [Pubmed]
  4. Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose. Ozcan, S., Johnston, M. Mol. Cell. Biol. (1996) [Pubmed]
  5. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Ozcan, S., Johnston, M. Mol. Cell. Biol. (1995) [Pubmed]
  6. Roles of multiple glucose transporters in Saccharomyces cerevisiae. Ko, C.H., Liang, H., Gaber, R.F. Mol. Cell. Biol. (1993) [Pubmed]
  7. Glucose transport in the yeast Kluyveromyces lactis. I. Properties of an inducible low-affinity glucose transporter gene. Wésolowski-Louvel, M., Goffrini, P., Ferrero, I., Fukuhara, H. Mol. Gen. Genet. (1992) [Pubmed]
  8. DDSE: downstream targets of the SNF3 signal transduction pathway. Theodoris, G., Bisson, L.F. FEMS Microbiol. Lett. (2001) [Pubmed]
  9. Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) recruitment and chromatin remodeling activities on the HXT2 and HXT4 promoters. van Oevelen, C.J., van Teeffelen, H.A., van Werven, F.J., Timmers, H.T. J. Biol. Chem. (2006) [Pubmed]
  10. Hyperosmotic stress represses the transcription of HXT2 and HXT4 genes in Saccharomyces cerevisiae. Türkel, S. Folia Microbiol. (Praha) (1999) [Pubmed]
  11. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Johnson, R.E., Henderson, S.T., Petes, T.D., Prakash, S., Bankmann, M., Prakash, L. Mol. Cell. Biol. (1992) [Pubmed]
  12. Isolation and characterization of the LGT1 gene encoding a low-affinity glucose transporter from Torulaspora delbrueckii. Alves-Araújo, C., Hernandez-Lopez, M.J., Prieto, J.A., Randez-Gil, F., Sousa, M.J. Yeast (2005) [Pubmed]
  13. High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. Theodoris, G., Fong, N.M., Coons, D.M., Bisson, L.F. Genetics (1994) [Pubmed]
  14. Functional characterization of the Frt1 sugar transporter and of fructose uptake in Kluyveromyces lactis. Diezemann, A., Boles, E. Curr. Genet. (2003) [Pubmed]
  15. Transcription of the HXT4 gene is regulated by Gcr1p and Gcr2p in the yeast S. cerevisiae. Türkel, S., Bisson, L.F. Yeast (1999) [Pubmed]
  16. A glucose transporter chimera confers a dominant negative glucose starvation phenotype in Saccharomyces cerevisiae. Sherwood, P.W., Katic, I., Sanz, P., Carlson, M. Genetics (2000) [Pubmed]
  17. The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Prior, C., Mamessier, P., Fukuhara, H., Chen, X.J., Wesolowski-Louvel, M. Mol. Cell. Biol. (1993) [Pubmed]
  18. Enolase and glycolytic flux play a role in the regulation of the glucose permease gene RAG1 of Kluyveromyces lactis. Lemaire, M., Wésolowski-Louvel, M. Genetics (2004) [Pubmed]
  19. Evidence for involvement of Saccharomyces cerevisiae protein kinase C in glucose induction of HXT genes and derepression of SUC2. Brandão, R.L., Etchebehere, L., Queiroz, C.C., Trópia, M.J., Ernandes, J.R., Gonçalves, T., Loureiro-Dias, M.C., Winderickx, J., Thevelein, J.M., Leiper, F.C., Carling, D., Castro, I.M. FEMS Yeast Res. (2002) [Pubmed]
 
WikiGenes - Universities