The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

RAD23  -  Rad23p

Saccharomyces cerevisiae S288c

Synonyms: SYGP-ORF29, UV excision repair protein RAD23, YEL037C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of RAD23

 

High impact information on RAD23

 

Biological context of RAD23

  • The only other known yeast ubiquitin-like protein is encoded by the nucleotide excision repair gene RAD23 (Watkins, J.F.,P. Sung, L. Prakash, and S. Prakash. 1993. Mol. Cell. Bio. 13:7757-7765) [7].
  • RAD7 gene of Saccharomyces cerevisiae: transcripts, nucleotide sequence analysis, and functional relationship between the RAD7 and RAD23 gene products [8].
  • Cell cycle progression in the triple deletion strain can only be partially rescued by a rad23 allele lacking the c-terminal UBA domain, suggesting that RAD23 requires its c-terminal UBA domain for full function [9].
  • RAD23 and DDI1 suppress the temperature and hydroxyurea, but not radiation or nocodazole, sensitivity of pds1-128. rad23 and ddi1 mutants are partially defective in S-phase checkpoint control but are proficient in DNA damage and spindle assembly checkpoints [10].
  • Deletion of the UBA domains of Rad23p and Ddi1p renders cells defective in S-phase checkpoint control, implicating UBA domains in checkpoint signaling [10].
 

Anatomical context of RAD23

 

Associations of RAD23 with chemical compounds

 

Physical interactions of RAD23

  • Pth2 bound to the UBL domain of both Rad23 and Dsk2 [17].
  • Rad23 contains a ubiquitin-like domain (UbL(R23)) that interacts with catalytically active proteasomes and two ubiquitin (Ub)-associated (UBA) sequences that bind Ub [18].
  • Here, we demonstrate that the UBL motif of Rad23 also binds Ufd2, an E4 enzyme essential for ubiquitin chain assembly onto its substrates [19].
  • More recent studies in yeast indicate that Png1p can bind to the 26S proteasome through its interaction with the DNA repair protein Rad23p [20].
 

Regulatory relationships of RAD23

  • As Rad23 also controls Rad4 levels, these results suggest a complex system for globally regulating repair activity in vivo by controlling turnover of Rad4 [21].
  • Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14 [22].
  • We determined that yeast and human Rad23 inhibited multi-ubiquitin (Ub) chain formation and the degradation of proteolytic substrates [23].
 

Other interactions of RAD23

  • Although DSK2 is not essential, a strain deleted for both DSK2 and RAD23 is temperature sensitive for growth due to a block in SPB duplication [7].
  • Alternatively, an interaction between the RAD7 and RAD23 proteins could also account for these observations [8].
  • Therefore, Rad23p and Ddi1p participate in a subset of Pds1p-dependent cell cycle controls [10].
  • Here we show that the proteasome directly recognizes ubiquitin chains through a specific subunit, Rpn10, and also recognizes chains indirectly through Rad23, a reversibly bound proteasome cofactor [24].
  • We show that UMP1 is not epistatic to RAD23 and RAD2, which are involved in the nucleotide excision repair (NER) pathway [25].
 

Analytical, diagnostic and therapeutic context of RAD23

  • The interaction between PNGase and Rad23 was studied using surface plasmon resonance revealing an equilibrium binding constant of approximately 2.5 microM [26].
  • Yeast peptide: N-glycanase (PNGase) is involved in the proteasomal degradation of misfolded glycoproteins where it interacts with the DNA repair protein Rad23 as first detected in a yeast two-hybrid assay and subsequently confirmed by biochemical in vivo analyses [26].

References

  1. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P.J., Bootsma, D. EMBO J. (1994) [Pubmed]
  2. Overexpression of Rad23 confers resistance to methylmercury in saccharomyces cerevisiae via inhibition of the degradation of ubiquitinated proteins. Hwang, G.W., Sasaki, D., Naganuma, A. Mol. Pharmacol. (2005) [Pubmed]
  3. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Verma, R., Oania, R., Graumann, J., Deshaies, R.J. Cell (2004) [Pubmed]
  4. An extensive deletion causing overproduction of yeast iso-2-cytochrome c. McKnight, G.L., Cardillo, T.S., Sherman, F. Cell (1981) [Pubmed]
  5. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W., Madura, K. Nature (1998) [Pubmed]
  6. Cdc48-Ufd2-Rad23: the road less ubiquitinated? Bazirgan, O.A., Hampton, R.Y. Nat. Cell Biol. (2005) [Pubmed]
  7. Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. Biggins, S., Ivanovska, I., Rose, M.D. J. Cell Biol. (1996) [Pubmed]
  8. RAD7 gene of Saccharomyces cerevisiae: transcripts, nucleotide sequence analysis, and functional relationship between the RAD7 and RAD23 gene products. Perozzi, G., Prakash, S. Mol. Cell. Biol. (1986) [Pubmed]
  9. Yeast UBL-UBA proteins have partially redundant functions in cell cycle control. D??az-Mart??nez, L.A., Kang, Y., Walters, K.J., Clarke, D.J. Cell division (2006) [Pubmed]
  10. Dosage suppressors of pds1 implicate ubiquitin-associated domains in checkpoint control. Clarke, D.J., Mondesert, G., Segal, M., Bertolaet, B.L., Jensen, S., Wolff, M., Henze, M., Reed, S.I. Mol. Cell. Biol. (2001) [Pubmed]
  11. The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Wang, Z., Wei, S., Reed, S.H., Wu, X., Svejstrup, J.Q., Feaver, W.J., Kornberg, R.D., Friedberg, E.C. Mol. Cell. Biol. (1997) [Pubmed]
  12. Expression of a novel RAD23B mRNA splice variant in the human testis. Huang, X., Wang, H., Xu, M., Lu, L., Xu, Z., Li, J., Zhou, Z., Sha, J. J. Androl. (2004) [Pubmed]
  13. Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Lambertson, D., Chen, L., Madura, K. Genetics (1999) [Pubmed]
  14. Roles of Rad23 protein in yeast nucleotide excision repair. Xie, Z., Liu, S., Zhang, Y., Wang, Z. Nucleic Acids Res. (2004) [Pubmed]
  15. The Png1-Rad23 complex regulates glycoprotein turnover. Kim, I., Ahn, J., Liu, C., Tanabe, K., Apodaca, J., Suzuki, T., Rao, H. J. Cell Biol. (2006) [Pubmed]
  16. Defective excision of pyrimidine dimers and interstrand DNA crosslinks in rad7 and rad23 mutants of Saccharomyces cerevisiae. Miller, R.D., Prakash, L., Prakash, S. Mol. Gen. Genet. (1982) [Pubmed]
  17. Yeast Pth2 is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway. Ishii, T., Funakoshi, M., Kobayashi, H. EMBO J. (2006) [Pubmed]
  18. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Chen, L., Madura, K. Mol. Cell. Biol. (2002) [Pubmed]
  19. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Kim, I., Mi, K., Rao, H. Mol. Biol. Cell (2004) [Pubmed]
  20. Cytoplasmic peptide:N-glycanase (PNGase) in eukaryotic cells: occurrence, primary structure, and potential functions. Suzuki, T., Park, H., Lennarz, W.J. FASEB J. (2002) [Pubmed]
  21. The NEF4 complex regulates Rad4 levels and utilizes Snf2/Swi2-related ATPase activity for nucleotide excision repair. Ramsey, K.L., Smith, J.J., Dasgupta, A., Maqani, N., Grant, P., Auble, D.T. Mol. Cell. Biol. (2004) [Pubmed]
  22. Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. Guzder, S.N., Bailly, V., Sung, P., Prakash, L., Prakash, S. J. Biol. Chem. (1995) [Pubmed]
  23. The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly. Ortolan, T.G., Tongaonkar, P., Lambertson, D., Chen, L., Schauber, C., Madura, K. Nat. Cell Biol. (2000) [Pubmed]
  24. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. Elsasser, S., Chandler-Militello, D., Müller, B., Hanna, J., Finley, D. J. Biol. Chem. (2004) [Pubmed]
  25. The link between 20S proteasome activity and post-replication DNA repair in Saccharomyces cerevisiae. Podlaska, A., McIntyre, J., Skoneczna, A., Sledziewska-Gojska, E. Mol. Microbiol. (2003) [Pubmed]
  26. The N-terminus of yeast peptide: N-glycanase interacts with the DNA repair protein Rad23. Biswas, S., Katiyar, S., Li, G., Zhou, X., Lennarz, W.J., Schindelin, H. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
 
WikiGenes - Universities