The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AG-E-66479     methylmercury

Synonyms: AG-L-17981, CHEBI:30785, AC1L1PTO, CTK4D0492, AR-1J5879, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of methylmercury


Psychiatry related information on methylmercury


High impact information on methylmercury


Chemical compound and disease context of methylmercury


Biological context of methylmercury


Anatomical context of methylmercury


Associations of methylmercury with other chemical compounds


Gene context of methylmercury


Analytical, diagnostic and therapeutic context of methylmercury


  1. A role of selenium against methylmercury toxicity. Sumino, K., Yamamoto, R., Kitamura, S. Nature (1977) [Pubmed]
  2. Early chronic low-level methylmercury poisoning in monkeys impairs spatial vision. Rice, D.C., Gilbert, S.G. Science (1982) [Pubmed]
  3. Is chemical neurotransmission altered specifically during methylmercury-induced cerebellar dysfunction? Atchison, W.D. Trends Pharmacol. Sci. (2005) [Pubmed]
  4. Impaired biliary excretion and whole body elimination of methylmercury in rats with congenital defect in biliary glutathione excretion. Ballatori, N., Gatmaitan, Z., Truong, A.T. Hepatology (1995) [Pubmed]
  5. Variability of neuropathologic lesions in experimental methylmercurial encephalopathy in primates. Shaw, C.M., Mottet, N.K., Body, R.L., Luschei, E.S. Am. J. Pathol. (1975) [Pubmed]
  6. Methylmercury and neurodevelopment: reanalysis of the Seychelles Child Development Study outcomes at 66 months of age. Davidson, P.W., Kost, J., Myers, G.J., Cox, C., Clarkson, T.W., Shamlaye, C.F. JAMA (2001) [Pubmed]
  7. Does methylmercury have a role in causing developmental disabilities in children? Myers, G.J., Davidson, P.W. Environ. Health Perspect. (2000) [Pubmed]
  8. Acute exposure to methylmercury at two developmental windows: focus on neurobehavioral and neurochemical effects in rat offspring. Carratù, M.R., Borracci, P., Coluccia, A., Giustino, A., Renna, G., Tomasini, M.C., Raisi, E., Antonelli, T., Cuomo, V., Mazzoni, E., Ferraro, L. Neuroscience (2006) [Pubmed]
  9. Prenatal methylmercury exposure and children: neurologic, developmental, and behavioral research. Myers, G.J., Davidson, P.W. Environ. Health Perspect. (1998) [Pubmed]
  10. Transcription of structural and intervening sequences in the ovalbumin gene and identification of potential ovalbumin mRNA precursors. Roop, D.R., Nordstrom, J.L., Tsai, S.Y., Tsai, M.J., O'Malley, B.W. Cell (1978) [Pubmed]
  11. Methylmercury and selenium in umbilical cords of inhabitants of the Minamata area. Nishigaki, S., Harada, M. Nature (1975) [Pubmed]
  12. On the occurrence of cytochrome P-450 and aryl hydrocarbon hydroxylase activity in rat brain. Cohn, J.A., Alvares, A.P., Kappas, A. J. Exp. Med. (1977) [Pubmed]
  13. Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Pickhardt, P.C., Folt, C.L., Chen, C.Y., Klaue, B., Blum, J.D. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  14. Accelerated methylmercury elimination in gamma-glutamyl transpeptidase-deficient mice. Ballatori, N., Wang, W., Lieberman, M.W. Am. J. Pathol. (1998) [Pubmed]
  15. Repression of GADD153/CHOP by NF-kappaB: a possible cellular defense against endoplasmic reticulum stress-induced cell death. Nozaki, S., Sledge Jr, G.W., Nakshatri, H. Oncogene (2001) [Pubmed]
  16. Characterization of interactions of methylmercury with Ca2+ channels in synaptosomes and pheochromocytoma cells: radiotracer flux and binding studies. Shafer, T.J., Contreras, M.L., Atchison, W.D. Mol. Pharmacol. (1990) [Pubmed]
  17. Strategy for the assessment of neurobehavioral consequences of environmental factors. Tilson, H.A., Cabe, P.A. Environ. Health Perspect. (1978) [Pubmed]
  18. Effects of methylmercury and mercuric chloride on differentiation and cell viability in PC12 cells. Parran, D.K., Mundy, W.R., Barone, S. Toxicol. Sci. (2001) [Pubmed]
  19. Prenatal exposure to high levels of glucocorticoids increases the susceptibility of cerebellar granule cells to oxidative stress-induced cell death. Ahlbom, E., Gogvadze, V., Chen, M., Celsi, G., Ceccatelli, S. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  20. Methylmercury poisoning: long-term clinical, radiological, toxicological, and pathological studies of an affected family. Davis, L.E., Kornfeld, M., Mooney, H.S., Fiedler, K.J., Haaland, K.Y., Orrison, W.W., Cernichiari, E., Clarkson, T.W. Ann. Neurol. (1994) [Pubmed]
  21. GFAT as a target molecule of methylmercury toxicity in Saccharomyces cerevisiae. Naganuma, A., Miura, N., Kaneko, S., Mishina, T., Hosoya, S., Miyairi, S., Furuchi, T., Kuge, S. FASEB J. (2000) [Pubmed]
  22. Methylmercury hydroxide enhancement of translation and transcription of ovalbumin and conalbumin mRNA's. Payvar, F., Schimke, R.T. J. Biol. Chem. (1979) [Pubmed]
  23. Introduction and expression of a rabbit beta-globin gene in mouse fibroblasts. Wold, B., Wigler, M., Lacy, E., Maniatis, T., Silverstein, S., Axel, R. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  24. Primate paneth cell degeneration following methylmercury hydroxide ingestion. Mottet, N.K., Body, R.L. Am. J. Pathol. (1976) [Pubmed]
  25. Mechanism of methylmercury cytotoxicity. Miura, K., Imura, N. Crit. Rev. Toxicol. (1987) [Pubmed]
  26. Taxol protects the microtubules of concanavalin A-activated lymphocytes from disassembly by methylmercury, but DNA synthesis is still inhibited. Roy, C., Prasad, K.V., Reuhl, K.R., Little, J.E., Valentine, B.K., Brown, D.L. Exp. Cell Res. (1991) [Pubmed]
  27. Nuclear magnetic resonance studies of the solution chemistry of metal complexes. XI. The binding of methylmercury by sulfhydryl-containing amino acids and by glutathione. Rabenstein, D.L., Fairhurst, M.T. J. Am. Chem. Soc. (1975) [Pubmed]
  28. Overexpression of the ubiquitin-conjugating enzyme Cdc34 confers resistance to methylmercury in Saccharomyces cerevisiae. Furuchi, T., Hwang, G.W., Naganuma, A. Mol. Pharmacol. (2002) [Pubmed]
  29. Handling of cysteine S-conjugates of methylmercury in MDCK cells expressing human OAT1. Zalups, R.K., Ahmad, S. Kidney Int. (2005) [Pubmed]
  30. Selective measurement of ultratrace methylmercury in fish by flow injection on-line microcolumn displacement sorption preconcentration and separation coupled with electrothermal atomic absorption spectrometry. Yan, X.P., Li, Y., Jiang, Y. Anal. Chem. (2003) [Pubmed]
  31. Probing mercury species-DNA interactions by capillary electrophoresis with on-line electrothermal atomic absorption spectrometric detection. Li, Y., Jiang, Y., Yan, X.P. Anal. Chem. (2006) [Pubmed]
  32. Role of hydrosulfide ions (HS-) in methylmercury resistance in Saccharomyces cerevisiae. Ono, B., Ishii, N., Fujino, S., Aoyama, I. Appl. Environ. Microbiol. (1991) [Pubmed]
  33. Foreign metallothionein-I expression by transient transfection in MT-I and MT-II null astrocytes confers increased protection against acute methylmercury cytotoxicity. Yao, C.P., Allen, J.W., Mutkus, L.A., Xu, S.B., Tan, K.H., Aschner, M. Brain Res. (2000) [Pubmed]
  34. Overexpression of Bop3 confers resistance to methylmercury in Saccharomyces cerevisiae through interaction with other proteins such as Fkh1, Rts1, and Msn2. Hwang, G.W., Furuoya, Y., Hiroshima, A., Furuchi, T., Naganuma, A. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  35. Methylmercury-induced increase of intracellular Ca2+ increases spontaneous synaptic current frequency in rat cerebellar slices. Yuan, Y., Atchison, W.D. Mol. Pharmacol. (2007) [Pubmed]
  36. Application of isotopically labeled methylmercury for isotope dilution analysis of biological samples using gas chromatography/ICPMS. Rodriguez Martín-Doimeadios, R.C., Krupp, E., Amouroux, D., Donard, O.F. Anal. Chem. (2002) [Pubmed]
  37. Changes in fatty acid composition of myelin cerebrosides after treatment of the developing rat with methylmercury chloride and diethylmercury. Grundt, I.K., Stensland, E., Syverson, T.L. J. Lipid Res. (1980) [Pubmed]
  38. Methylmercury differentially affects GABA(A) receptor-mediated spontaneous IPSCs in Purkinje and granule cells of rat cerebellar slices. Yuan, Y., Atchison, W.D. J. Physiol. (Lond.) (2003) [Pubmed]
  39. Methylmercury-induced movement and postural disorders in developing rat: high-affinity uptake of choline, glutamate, and gamma-aminobutyric acid in the cerebral cortex and caudate-putamen. O'Kusky, J.R., McGeer, E.G. J. Neurochem. (1989) [Pubmed]
WikiGenes - Universities