The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

leuS  -  leucyl-tRNA synthetase

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK0635, JW0637
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of leuS


High impact information on leuS


Chemical compound and disease context of leuS


Biological context of leuS


Associations of leuS with chemical compounds


Other interactions of leuS


Analytical, diagnostic and therapeutic context of leuS


  1. Molecular cloning and nucleotide sequence of the gene for Escherichia coli leucyl-tRNA synthetase. Härtlein, M., Madern, D. Nucleic Acids Res. (1987) [Pubmed]
  2. Human immunodeficiency virus type 1 (HIV-1) strains selected for resistance against the HIV-1-specific [2',5'-bis-O-(tert-butyldimethylsilyl)-3'-spiro- 5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide)]-beta-D-pentofurano syl (TSAO) nucleoside analogues retain sensitivity to HIV-1-specific nonnucleoside inhibitors. Balzarini, J., Karlsson, A., Vandamme, A.M., Pérez-Pérez, M.J., Zhang, H., Vrang, L., Oberg, B., Bäckbro, K., Unge, T., San-Félix, A. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  3. Sequence and structural similarities between the leucine-specific binding protein and leucyl-tRNA synthetase of Escherichia coli. Williamson, R.M., Oxender, D.L. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  4. A Viable Amino Acid Editing Activity in the Leucyl-tRNA Synthetase CP1-splicing Domain Is Not Required in the Yeast Mitochondria. Karkhanis, V.A., Boniecki, M.T., Poruri, K., Martinis, S.A. J. Biol. Chem. (2006) [Pubmed]
  5. Homology of yeast mitochondrial leucyl-tRNA synthetase and isoleucyl- and methionyl-tRNA synthetases of Escherichia coli. Tzagoloff, A., Akai, A., Kurkulos, M., Repetto, B. J. Biol. Chem. (1988) [Pubmed]
  6. Crystallization and preliminary X-ray crystallographic study of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii. Fukunaga, R., Yokoyama, S. Acta Crystallogr. D Biol. Crystallogr. (2004) [Pubmed]
  7. The molecular basis of leucine auxotrophy of quinone-treated Escherichia coli. Active site-directed modification of leucyl-tRNA synthetase by 6-amino-7-chloro-5,8-dioxoquinoline. Wiebauer, K., Ogilvie, A., Kersten, W. J. Biol. Chem. (1979) [Pubmed]
  8. A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu. Mursinna, R.S., Lincecum, T.L., Martinis, S.A. Biochemistry (2001) [Pubmed]
  9. Interfering with different steps of protein synthesis explored by transcriptional profiling of Escherichia coli K-12. Sabina, J., Dover, N., Templeton, L.J., Smulski, D.R., Söll, D., LaRossa, R.A. J. Bacteriol. (2003) [Pubmed]
  10. Cluster of mrdA and mrdB genes responsible for the rod shape and mecillinam sensitivity of Escherichia coli. Tamaki, S., Matsuzawa, H., Matsuhashi, M. J. Bacteriol. (1980) [Pubmed]
  11. Two conserved threonines collaborate in the Escherichia coli leucyl-tRNA synthetase amino acid editing mechanism. Zhai, Y., Martinis, S.A. Biochemistry (2005) [Pubmed]
  12. Groups on the side chain of T252 in Escherichia coli leucyl-tRNA synthetase are important for discrimination of amino acids and cell viability. Xu, M.G., Li, J., Du, X., Wang, E.D. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  13. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition. Fukunaga, R., Yokoyama, S. Nat. Struct. Mol. Biol. (2005) [Pubmed]
  14. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination. Liu, Y., Liao, J., Zhu, B., Wang, E.D., Ding, J. Biochem. J. (2006) [Pubmed]
  15. Regulation of biosynthesis of aminoacyl-transfer RNA synthetases and of transfer-RNA in Escherichia coli. Morgan, S., Larossa, R., Cheung, A., Low, B., Söll, D. Arch. Biol. Med. Exp. (1979) [Pubmed]
  16. Isolation and binding properties of leucyl-tRNA synthetase from Escherichia coli MRE 600. Granda, S., Hustedt, H., Flossdorf, J., Kula, M.R. Mol. Cell. Biochem. (1979) [Pubmed]
  17. Studies of the interaction between aminoacyl-tRNA synthetase and transfer ribonucleic acid by equilibrium partition. Hustedt, H., Kula, M.R. Eur. J. Biochem. (1977) [Pubmed]
  18. Molecular dissection of a critical specificity determinant within the amino acid editing domain of leucyl-tRNA synthetase. Mursinna, R.S., Lee, K.W., Briggs, J.M., Martinis, S.A. Biochemistry (2004) [Pubmed]
WikiGenes - Universities