The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

cadA  -  lysine decarboxylase, acid-inducible

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK4125, JW4092, ldcI
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of cadA

 

High impact information on cadA

  • They do not inhibit the corresponding biodegradative ornithine and arginine decarboxylases, nor do they inhibit lysine decarboxylase or S-adenosylmethionine decarboxylase [6].
  • Heterologous expression of H. pylori cadA in an Escherichia coli zntA mutant resulted in an elevated resistance to Cd(II) and Zn(II) [4].
  • Gene complementation experiments with plasmid (pY178)-derived H. pylori cadA failed to correct the deficiencies, whereas resistance to Cd(II) and Zn(II) was restored [4].
  • All tested cadA mutants showed increased growth sensitivity to Cd(II) and Zn(II) [4].
  • Expression of cadA in E. coli SE5000 harbouring H. pylori nixA, which encodes a divalent cation importer along with the H. pylori urease gene cluster, led to about a threefold increase in urease activity compared with E. coli control cells lacking the H. pylori cadA gene [4].
 

Chemical compound and disease context of cadA

 

Biological context of cadA

  • Negative regulation by LysP was further demonstrated by showing that lysP expression from a high-copy-number plasmid rendered cadA-lacZ uninducible [12].
  • Our data suggests that cadA, cadB, and the acid-inducible Pcad comprise, at least in part, the cad operon which is under control of the cadC product [1].
  • DNA sequencing revealed two long open reading frames upstream of and on the same strand as cadA [1].
  • The hybridization experiments with a cadA probe at low stringency showed that the homologous region of cadA was located in lambda Kohara phage clone 6F5 at 4.7 min on the E. coli chromosome [2].
  • Under different growth conditions, the cell division rate correlated with the level of expression of cadA [13].
 

Anatomical context of cadA

 

Associations of cadA with chemical compounds

  • To better understand the nature of the lysine-dependent signal, mutants were isolated which expressed a cadA-lacZ transcription fusion in the absence of lysine while retaining pH regulation [12].
  • Mutational analysis indicated that cadA and cadR are fully responsible for cadmium resistance and partially for zinc resistance [3].
  • The cadA promoter was responsive to Cd(II), Pb(II), and Zn(II), while the cadR promoter was only induced by Cd(II) [3].
  • Despite the derepressed level of lysine decarboxylase in exponential cultures of the mutant extracts of these cultures had no detectable cadaverine pool [15].
  • Complementation of the above missing functions was achieved by using the Clarke-Carbon plasmids pLC4-5 (LysU LDC) and pLC17-38 (LysU Mel ADI) [16].
 

Other interactions of cadA

 

Analytical, diagnostic and therapeutic context of cadA

References

  1. Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. Watson, N., Dunyak, D.S., Rosey, E.L., Slonczewski, J.L., Olson, E.R. J. Bacteriol. (1992) [Pubmed]
  2. Characterization of a second lysine decarboxylase isolated from Escherichia coli. Kikuchi, Y., Kojima, H., Tanaka, T., Takatsuka, Y., Kamio, Y. J. Bacteriol. (1997) [Pubmed]
  3. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Lee, S.W., Glickmann, E., Cooksey, D.A. Appl. Environ. Microbiol. (2001) [Pubmed]
  4. Helicobacter pylori cadA encodes an essential Cd(II)-Zn(II)-Co(II) resistance factor influencing urease activity. Herrmann, L., Schwan, D., Garner, R., Mobley, H.L., Haas, R., Schäfer, K.P., Melchers, K. Mol. Microbiol. (1999) [Pubmed]
  5. CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. Endo, G., Silver, S. J. Bacteriol. (1995) [Pubmed]
  6. Regulation of polyamine biosynthesis in Escherichia coli by basic proteins. Heller, J.S., Rostomily, R., Kyriakidis, D.A., Canellakis, E.S. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  7. Nucleotide sequence of the adi gene, which encodes the biodegradative acid-induced arginine decarboxylase of Escherichia coli. Stim, K.P., Bennett, G.N. J. Bacteriol. (1993) [Pubmed]
  8. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase. Tabor, H., Hafner, E.W., Tabor, C.W. J. Bacteriol. (1980) [Pubmed]
  9. Construction of lac fusions to the inducible arginine- and lysine decarboxylase genes of Escherichia coli K12. Auger, E.A., Redding, K.E., Plumb, T., Childs, L.C., Meng, S.Y., Bennett, G.N. Mol. Microbiol. (1989) [Pubmed]
  10. Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. Kitagawa, W., Takami, S., Miyauchi, K., Masai, E., Kamagata, Y., Tiedje, J.M., Fukuda, M. J. Bacteriol. (2002) [Pubmed]
  11. Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Park, Y.K., Bearson, B., Bang, S.H., Bang, I.S., Foster, J.W. Mol. Microbiol. (1996) [Pubmed]
  12. Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon. Neely, M.N., Dell, C.L., Olson, E.R. J. Bacteriol. (1994) [Pubmed]
  13. The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA. Prüss, B.M., Markovic, D., Matsumura, P. J. Bacteriol. (1997) [Pubmed]
  14. Inhibition of Shigella flexneri-induced transepithelial migration of polymorphonuclear leucocytes by cadaverine. McCormick, B.A., Fernandez, M.I., Siber, A.M., Maurelli, A.T. Cell. Microbiol. (1999) [Pubmed]
  15. Escherichia coli regulatory mutation affecting lysine transport and lysine decarboxylase. Popkin, P.S., Maas, W.K. J. Bacteriol. (1980) [Pubmed]
  16. Partial characterization of a lysU mutant of Escherichia coli K-12. Hassani, M., Saluta, M.V., Bennett, G.N., Hirshfield, I.N. J. Bacteriol. (1991) [Pubmed]
  17. Effects of multicopy LeuO on the expression of the acid-inducible lysine decarboxylase gene in Escherichia coli. Shi, X., Bennett, G.N. J. Bacteriol. (1995) [Pubmed]
  18. Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. Meng, S.Y., Bennett, G.N. J. Bacteriol. (1992) [Pubmed]
  19. The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Yamamoto, Y., Miwa, Y., Miyoshi, K., Furuyama, J., Ohmori, H. Genes Genet. Syst. (1997) [Pubmed]
  20. RpoS-dependent expression of the second lysine decarboxylase gene in Escherichia coli. Kikuchi, Y., Kurahashi, O., Nagano, T., Kamio, Y. Biosci. Biotechnol. Biochem. (1998) [Pubmed]
  21. Molecular analysis of Shigella boydii O1 O-antigen gene cluster and its PCR typing. Tao, J., Wang, L., Liu, D., Li, Y., Bastin, D.A., Geng, Y., Feng, L. Can. J. Microbiol. (2005) [Pubmed]
 
WikiGenes - Universities