The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

valS  -  valyl-tRNA synthetase

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK4251, JW4215, val-act
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of valS


High impact information on valS


Chemical compound and disease context of valS


Biological context of valS


Associations of valS with chemical compounds


Analytical, diagnostic and therapeutic context of valS


  1. Valyl-tRNA synthetase gene of Escherichia coli K12. Primary structure and homology within a family of aminoacyl-TRNA synthetases. Heck, J.D., Hatfield, G.W. J. Biol. Chem. (1988) [Pubmed]
  2. The valyl-tRNA synthetase from Bacillus stearothermophilus has considerable sequence homology with the isoleucyl-tRNA synthetase from Escherichia coli. Borgford, T.J., Brand, N.J., Gray, T.E., Fersht, A.R. Biochemistry (1987) [Pubmed]
  3. Structure and regulation of expression of the Bacillus subtilis valyl-tRNA synthetase gene. Luo, D., Leautey, J., Grunberg-Manago, M., Putzer, H. J. Bacteriol. (1997) [Pubmed]
  4. Response of a phage modification factor to enhanced production of its target molecule. Olson, N.J., Marchin, G.L. J. Virol. (1985) [Pubmed]
  5. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Fukai, S., Nureki, O., Sekine, S., Shimada, A., Tao, J., Vassylyev, D.G., Yokoyama, S. Cell (2000) [Pubmed]
  6. Identification of functional similarities between proteins using directed evolution. Christ, D., Winter, G. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  7. Misactivated amino acids translocate at similar rates across surface of a tRNA synthetase. Nomanbhoy, T.K., Schimmel, P.R. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  8. Functional transfer RNAs with modifications in the 3'-CCA end: differential effects on aminoacylation and polypeptide synthesis. Liu, M., Horowitz, J. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  9. Importance of the anticodon sequence in the aminoacylation of tRNAs by methionyl-tRNA synthetase and by valyl-tRNA synthetase in an Archaebacterium. Ramesh, V., RajBhandary, U.L. J. Biol. Chem. (2001) [Pubmed]
  10. Crucial role of conserved lysine 277 in the fidelity of tRNA aminoacylation by Escherichia coli valyl-tRNA synthetase. Hountondji, C., Lazennec, C., Beauvallet, C., Dessen, P., Pernollet, J.C., Plateau, P., Blanquet, S. Biochemistry (2002) [Pubmed]
  11. Role of the CCA terminal sequence of tRNA(Val) in aminoacylation with valyl-tRNA synthetase. Tamura, K., Nameki, N., Hasegawa, T., Shimizu, M., Himeno, H. J. Biol. Chem. (1994) [Pubmed]
  12. Phosphonate analogues of aminoacyl adenylates. Southgate, C.C., Dixon, H.B. Biochem. J. (1978) [Pubmed]
  13. Valyl-tRNA synthetase gene of Escherichia coli K12. Molecular genetic characterization. Heck, J.D., Hatfield, G.W. J. Biol. Chem. (1988) [Pubmed]
  14. Synthesis of the isoleucyl- and valyl-tRNA synthetases and the isoleucine-valine biosynthetic enzymes in a threonine deaminase regulatory mutant of Escherichia coli K-12. Singer, P.A., Levinthal, M., Williams, L.S. J. Mol. Biol. (1984) [Pubmed]
  15. Synthesis and activities of branched-chain aminoacyl-tRNA synthetases in threonine deaminase mutants of Escherichia coli. Williams, A.L., Whitfield, S.M., Williams, L.S. J. Bacteriol. (1978) [Pubmed]
  16. Amino acid selectivity in the aminoacylation of coenzyme A and RNA minihelices by aminoacyl-tRNA synthetases. Jakubowski, H. J. Biol. Chem. (2000) [Pubmed]
  17. Effect of stringent and relaxed control on transcription of the tryptophan operon from the ptrp promoter and the PL promoter in trp phage. Kuwano, M., Imamoto, F. Biochim. Biophys. Acta (1976) [Pubmed]
  18. Regulation of the biosynthesis of aminoacyl-transfer ribonucleic acid synthetases and of transfer ribonucleic acid in Escherichia coli. V. Mutants with increased levels of valyl-transfer ribonucleic acid synthetase. Baer, M., Low, K.B., Söll, D. J. Bacteriol. (1979) [Pubmed]
WikiGenes - Universities