The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Laryngeal Muscles

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Laryngeal Muscles


High impact information on Laryngeal Muscles

  • During the early postmetamorphic period, androgen directs proliferation and differentiation of laryngeal muscle and cartilage [5].
  • A muscle-specific nonviral vector containing the alpha-actin promoter and hIGF-I gene was used in formulation with a polyvinyl-based delivery system and injected into paralyzed adult rat laryngeal muscle [6].
  • In adults, all male laryngeal muscle fibers express the mRNA for a laryngeal-specific myosin heavy chain (MHC), LM; female laryngeal muscle expresses LM in a subset of fast-twitch fibers [7].
  • The effects of aerosolized distilled water and isosmolal dextrose in the isolated larynx on laryngeal muscle activity were studied in eight anesthetized dogs [8].
  • In this study, we first determined whether and how testosterone (T) modifies the vocalizations of adult females and then examined changes underlying the behavioral modification at the laryngeal muscle and motoneuron levels [9].

Biological context of Laryngeal Muscles

  • In prolactin-deprived animals, androgen-induced changes in the contractile properties of laryngeal muscle are blocked, which prevents the rapid rates of muscle contraction required for males to produce courtship songs [10].
  • Histomorphometric data (fiber frequencies, fiber diameters, and atrophy factors) were determined in laryngeal muscles [thyroarytenoid (VOC), posterior (PCA) and lateral (LCA) cricoarytenoids, and cricothyroid (CT) muscles] [11].

Anatomical context of Laryngeal Muscles


Associations of Laryngeal Muscles with chemical compounds

  • Pharmacodynamic modeling of vecuronium-induced twitch depression. Rapid plasma-effect site equilibration explains faster onset at resistant laryngeal muscles than at the adductor pollicis [16].
  • Unlike the finding for other nondepolarizing muscle relaxants, the laryngeal muscles are not resistant to rapacuronium [17].
  • CONCLUSIONS: With mivacurium, onset and recovery are faster at the laryngeal muscles, but block is less intense than at the adductor pollicis [18].
  • To further explore androgen regulation in adults, males and females were gonadectomized and implanted with silicone tubes containing testosterone propionate for 1.5-3 years and laryngeal muscle fibers and axon numbers compared to those of gonadectomized or sham-operated adult controls [19].
  • It is concluded that, in adults, succinylcholine-induced blockade is more rapid and more intense at the laryngeal muscles than at the adductor pollicis [20].

Gene context of Laryngeal Muscles


Analytical, diagnostic and therapeutic context of Laryngeal Muscles


  1. Longitudinal effects of botulinum toxin injections on voice-related quality of life (V-RQOL) for patients with adductory spasmodic dysphonia. Hogikyan, N.D., Wodchis, W.P., Spak, C., Kileny, P.R. Journal of voice : official journal of the Voice Foundation. (2001) [Pubmed]
  2. Changes in laryngeal muscle activities during hypercapnia in the cat. Adachi, T., Umezaki, T., Matsuse, T., Shin, T. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. (1998) [Pubmed]
  3. Laryngeal dystonia: a series with botulinum toxin therapy. Blitzer, A., Brin, M.F. The Annals of otology, rhinology, and laryngology. (1991) [Pubmed]
  4. Elevated F-18 FDG uptake in laryngeal muscles mimicking thyroid cancer metastases. Zhu, Z., Chou, C., Yen, T.C., Cui, R. Clinical nuclear medicine. (2001) [Pubmed]
  5. An androgen receptor mRNA isoform associated with hormone-induced cell proliferation. Fischer, L., Catz, D., Kelley, D. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  6. Reinnervation of motor endplates and increased muscle fiber size after human insulin-like growth factor I gene transfer into the paralyzed larynx. Shiotani, A., O'Malley, B.W., Coleman, M.E., Alila, H.W., Flint, P.W. Hum. Gene Ther. (1998) [Pubmed]
  7. Androgen regulation of a laryngeal-specific myosin heavy chain mRNA isoform whose expression is sexually differentiated. Catz, D.S., Fischer, L.M., Kelley, D.B. Dev. Biol. (1995) [Pubmed]
  8. Effect of airway surface liquid composition on laryngeal muscle activation. Kuna, S.T., Sant'Ambrogio, F.B., Sant'Ambrogio, G. Sleep. (1996) [Pubmed]
  9. Androgen-induced vocal transformation in adult female African clawed frogs. Potter, K.A., Bose, T., Yamaguchi, A. J. Neurophysiol. (2005) [Pubmed]
  10. Prolactin opens the sensitive period for androgen regulation of a larynx-specific myosin heavy chain gene. Edwards, C.J., Yamamoto, K., Kikuyama, S., Kelley, D.B. J. Neurobiol. (1999) [Pubmed]
  11. Influence of unilateral vocal fold fixation on the structure of the intrinsic laryngeal muscles. Langkau, R., Martin, F., Klingholz, F. Folia phoniatrica. (1993) [Pubmed]
  12. 5 alpha-dihydrotestosterone has nonspecific effects on membrane channels and possible genomic effects on ACh-activated channels. Erulkar, S.D., Wetzel, D.M. J. Neurophysiol. (1989) [Pubmed]
  13. Immunohistochemical localization of choline acetyltransferase of a peripheral type in the rat larynx. Nakanishi, Y., Tooyama, I., Yasuhara, O., Aimi, Y., Kitajima, K., Kimura, H. J. Chem. Neuroanat. (1999) [Pubmed]
  14. Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid concentrations in Xenopus laevis. Coady, K.K., Murphy, M.B., Villeneuve, D.L., Hecker, M., Jones, P.D., Carr, J.A., Solomon, K.R., Smith, E.E., Van Der Kraak, G., Kendall, R.J., Giesy, J.P. Ecotoxicol. Environ. Saf. (2005) [Pubmed]
  15. A comparison of different concentrations of lignocaine hydrochloride used for topical anaesthesia of the larynx of the cat. Robinson, E.P., Rex, M.A., Brown, T.C. Anaesthesia and intensive care. (1985) [Pubmed]
  16. Pharmacodynamic modeling of vecuronium-induced twitch depression. Rapid plasma-effect site equilibration explains faster onset at resistant laryngeal muscles than at the adductor pollicis. Fisher, D.M., Szenohradszky, J., Wright, P.M., Lau, M., Brown, R., Sharma, M. Anesthesiology (1997) [Pubmed]
  17. A pharmacodynamic explanation for the rapid onset/offset of rapacuronium bromide. Wright, P.M., Brown, R., Lau, M., Fisher, D.M. Anesthesiology (1999) [Pubmed]
  18. Mivacurium neuromuscular block at the adductor muscles of the larynx and adductor pollicis in humans. Plaud, B., Debaene, B., Lequeau, F., Meistelman, C., Donati, F. Anesthesiology (1996) [Pubmed]
  19. Laryngeal muscle and motor neuron plasticity in Xenopus laevis: testicular masculinization of a developing neuromuscular system. Watson, J.T., Robertson, J., Sachdev, U., Kelley, D.B. J. Neurobiol. (1993) [Pubmed]
  20. Neuromuscular effects of succinylcholine on the vocal cords and adductor pollicis muscles. Meistelman, C., Plaud, B., Donati, F. Anesth. Analg. (1991) [Pubmed]
  21. Phylogenetic implications of the superfast myosin in extraocular muscles. Schachat, F., Briggs, M.M. J. Exp. Biol. (2002) [Pubmed]
  22. Timing of human insulin-like growth factor-1 gene transfer in reinnervating laryngeal muscle. Nakagawa, H., Shiotani, A., O'Malley, B.W., Coleman, M.E., Flint, P.W. Laryngoscope (2004) [Pubmed]
  23. Laryngeal muscle activity during speech breaks in adductor spasmodic dysphonia. Nash, E.A., Ludlow, C.L. Laryngoscope (1996) [Pubmed]
  24. Estrogen receptor expression in laryngeal muscle in relation to estrogen-dependent increases in synapse strength. Wu, K.H., Tobias, M.L., Kelley, D.B. Neuroendocrinology (2003) [Pubmed]
  25. Reinnervation of laryngeal muscles: a study of changes in myosin heavy chain expression. Kingham, P.J., Birchall, M.A., Burt, R., Jones, A., Terenghi, G. Muscle Nerve (2005) [Pubmed]
  26. Comparison of succinylcholine with two doses of rocuronium using a new method of monitoring neuromuscular block at the laryngeal muscles by surface laryngeal electromyography. Hemmerling, T.M., Schmidt, J., Wolf, T., Klein, P., Jacobi, K. British journal of anaesthesia. (2000) [Pubmed]
  27. The study of laryngeal muscle activity in normal human subjects and in patients with laryngeal dystonia using multiple fine-wire electromyography. Hillel, A.D. Laryngoscope (2001) [Pubmed]
  28. Physiologic assessment of botulinum toxin effects in the rat larynx. Inagi, K., Connor, N.P., Ford, C.N., Schultz, E., Rodriquez, A.A., Bless, D.M., Pasic, T., Heisey, D.M. Laryngoscope (1998) [Pubmed]
  29. Human insulinlike growth factor 1 gene transfer into paralyzed rat larynx: single vs multiple injection. Shiotani, A., O'Malley, B.W., Coleman, M.E., Flint, P.W. Arch. Otolaryngol. Head Neck Surg. (1999) [Pubmed]
WikiGenes - Universities