The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Motor Endplate

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Motor Endplate

 

High impact information on Motor Endplate

  • MuSK is a receptor tyrosine kinase localized to the motor endplate, seemingly well positioned to receive a key nerve-derived signal [6].
  • Neuronal nitric oxide synthase (nNOS) is concentrated at synaptic junctions in brain and motor endplates in skeletal muscle [7].
  • Agrin is a nerve-derived factor that can induced molecular reorganizations at the motor endplate, but the mechanism of action of agrin remains poorly understood [6].
  • Mutation of a new sodium channel gene, Scn8a, in the mouse mutant 'motor endplate disease' [8].
  • These results suggest that expression of IFN-gamma at motor end plates provokes an autoimmune humoral response, similar to human MG, thus linking the expression of this factor with development of this disease [9].
 

Chemical compound and disease context of Motor Endplate

 

Biological context of Motor Endplate

 

Anatomical context of Motor Endplate

 

Associations of Motor Endplate with chemical compounds

 

Gene context of Motor Endplate

  • The generally high levels of BChE activity in tissues, including the motor endplate, and the observation that mice live without AChE, suggest that BChE has an essential function in nullizygous mice and probably in wild-type mice as well [27].
  • As NO has been shown to induce collapse and growth arrest on neuronal growth cones, down-regulation of sarcolemmal neuronal NOS may contribute to axonal regeneration and attraction to muscle fibers aiming at the formation of new motor endplates providing reinnervation and reconstitution of NOS expression [28].
  • When epopeptide AB or Epo was locally injected into mice, the frequency of motor end plate sprouting in adjacent muscles increased in a manner similar to that induced by CNTF [29].
  • Previous studies have suggested that axotomy in juvenile (< 2 months) Wld mice induced a progressive nerve terminal withdrawal from motor endplates [30].
  • LIF deficiency leads to pronounced loss of distal axons and motor endplate alterations, whereas CNTF-and/or CT-1-deficient mice do not show significant changes in morphology of these structures [31].
 

Analytical, diagnostic and therapeutic context of Motor Endplate

References

  1. Acetylcholine release in myasthenia gravis: regulation at single end-plate level. Plomp, J.J., Van Kempen, G.T., De Baets, M.B., Graus, Y.M., Kuks, J.B., Molenaar, P.C. Ann. Neurol. (1995) [Pubmed]
  2. Ultrastructural localization of acetylcholine receptor at the motor endplate: myasthenia gravis and other neuromuscular diseases. Tsujihata, M., Hazama, R., Ishii, N., Ide, Y., Takamori, M. Neurology (1980) [Pubmed]
  3. The motor end-plate fine structure and ultrastructural localization of acetylcholine receptors in amyotrophic lateral sclerosis. Tsujihata, M., Hazama, R., Yoshimura, T., Satoh, A., Mori, M., Nagataki, S. Muscle Nerve (1984) [Pubmed]
  4. Thymic disorders and myasthenia gravis: genetic aspects. Zelano, G., Settesoldi, D., Lino, M.M., Batocchi, A., Evoli, A., Tonali, P.A. Ann. Med. (1999) [Pubmed]
  5. Sodium channel beta subunits: anything but auxiliary. Isom, L.L. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. (2001) [Pubmed]
  6. Agrin acts via a MuSK receptor complex. Glass, D.J., Bowen, D.C., Stitt, T.N., Radziejewski, C., Bruno, J., Ryan, T.E., Gies, D.R., Shah, S., Mattsson, K., Burden, S.J., DiStefano, P.S., Valenzuela, D.M., DeChiara, T.M., Yancopoulos, G.D. Cell (1996) [Pubmed]
  7. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Brenman, J.E., Chao, D.S., Gee, S.H., McGee, A.W., Craven, S.E., Santillano, D.R., Wu, Z., Huang, F., Xia, H., Peters, M.F., Froehner, S.C., Bredt, D.S. Cell (1996) [Pubmed]
  8. Mutation of a new sodium channel gene, Scn8a, in the mouse mutant 'motor endplate disease'. Burgess, D.L., Kohrman, D.C., Galt, J., Plummer, N.W., Jones, J.M., Spear, B., Meisler, M.H. Nat. Genet. (1995) [Pubmed]
  9. Myasthenia gravis-like syndrome induced by expression of interferon gamma in the neuromuscular junction. Gu, D., Wogensen, L., Calcutt, N.A., Xia, C., Zhu, S., Merlie, J.P., Fox, H.S., Lindstrom, J., Powell, H.C., Sarvetnick, N. J. Exp. Med. (1995) [Pubmed]
  10. Neostigmine-induced end-plate proliferation in the rat. A study using supra-vital methylene blue. Schwartz, M.S., Sargeant, M.K., Swash, M. Neurology (1977) [Pubmed]
  11. Diagnostic significance of IgG, C3, and C9 at the limb muscle motor end-plate in minimal myasthenia gravis. Tsujihata, M., Yoshimura, T., Satoh, A., Kinoshita, I., Matsuo, H., Mori, M., Nagataki, S. Neurology (1989) [Pubmed]
  12. Pyroantimonate deposition patterns observed in the motor endplate myopathy following esterase inactivation. Kawabuchi, M., Osame, M., Kanaseki, T., Igata, A. Fukuoka Igaku Zasshi (1986) [Pubmed]
  13. Regulation of acetylcholine receptor gene expression by neural factors and electrical activity during motor endplate formation. Changeux, J.P., Benoît, P., Bessis, A., Cartaud, J., Devillers-Thiéry, A., Fontaine, B., Galzi, J.L., Klarsfeld, A., Laufer, R., Mulle, C. Biochem. Soc. Symp. (1990) [Pubmed]
  14. A comparative electrophysiological study of motor end-plate diseased skeletal muscle in the mouse. Weinstein, S.P. J. Physiol. (Lond.) (1980) [Pubmed]
  15. The motor end-plate specific form of acetylcholinesterase: appearance during embryogenesis and re-innervation of rat muscle. Vigny, M., Koenig, J., Rieger, F. J. Neurochem. (1976) [Pubmed]
  16. Expression of Nav1.6 sodium channels by Schwann cells at neuromuscular junctions: role in the motor endplate disease phenotype. Musarella, M., Alcaraz, G., Caillol, G., Boudier, J.L., Couraud, F., Autillo-Touati, A. Glia (2006) [Pubmed]
  17. Insertional mutation of the motor endplate disease (med) locus on mouse chromosome 15. Kohrman, D.C., Plummer, N.W., Schuster, T., Jones, J.M., Jang, W., Burgess, D.L., Galt, J., Spear, B.T., Meisler, M.H. Genomics (1995) [Pubmed]
  18. Calcitonin gene-related peptide immunoreactive sensory and motor nerves of the rat, cat, and monkey esophagus. Rodrigo, J., Polak, J.M., Fernandez, L., Ghatei, M.A., Mulderry, P., Bloom, S.R. Gastroenterology (1985) [Pubmed]
  19. Evolution of cholinergic proteins in developing slow and fast skeletal muscles in chick embryo. Betz, H., Bourgeois, J.P., Changeux, J.P. J. Physiol. (Lond.) (1980) [Pubmed]
  20. Golli-MBP proteins mark the earliest stages of fiber extension and terminal arboration in the mouse peripheral nervous system. Landry, C.F., Ellison, J., Skinner, E., Campagnoni, A.T. J. Neurosci. Res. (1997) [Pubmed]
  21. Influence of reduced neuron pool on the magnitude of naturally occurring motor neuron death. Sohal, G.S., Stoney, S.D., Arumugam, T., Yamashita, T., Knox, T.S. J. Comp. Neurol. (1986) [Pubmed]
  22. Interaction of imipramine with the ionic channel of the acetylcholine receptor of motor endplate and electric organ. Eldefrawi, M.E., Warnick, J.E., Schofield, G.G., Albuquerque, E.X., Eldefrawi, A.T. Biochem. Pharmacol. (1981) [Pubmed]
  23. Increased uptake of acetylcholine-receptor antibody at motor endplate in myasthenic exacerbation. de Crousaz, G., Fulpius, B.W. Lancet (1978) [Pubmed]
  24. Ultrastructural localization of acid phosphatase in denervated and diabetic striated muscles. Spicer, S.S., Buse, M.G., Setser, M.E. Am. J. Pathol. (1980) [Pubmed]
  25. Myasthenia gravis associated with Satoyoshi syndrome: muscle cramps, alopecia, and diarrhea. Satoh, A., Tsujihata, M., Yoshimura, T., Mori, M., Nagataki, S. Neurology (1983) [Pubmed]
  26. The effects of chloramphenicol isomers on the motor end-plate nicotinic receptor-ion channel complex. Henderson, F., Prior, C., Dempster, J., Marshall, I.G. Mol. Pharmacol. (1986) [Pubmed]
  27. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. Li, B., Stribley, J.A., Ticu, A., Xie, W., Schopfer, L.M., Hammond, P., Brimijoin, S., Hinrichs, S.H., Lockridge, O. J. Neurochem. (2000) [Pubmed]
  28. Role of nitric oxide and nitric oxide synthases in experimental models of denervation and reinnervation. Tews, D.S. Microsc. Res. Tech. (2001) [Pubmed]
  29. Identification of a neurotrophic sequence in erythropoietin. Campana, W.M., Misasi, R., O'Brien, J.S. Int. J. Mol. Med. (1998) [Pubmed]
  30. Ultrastructural correlates of synapse withdrawal at axotomized neuromuscular junctions in mutant and transgenic mice expressing the Wld gene. Gillingwater, T.H., Ingham, C.A., Coleman, M.P., Ribchester, R.R. J. Anat. (2003) [Pubmed]
  31. Triple knock-out of CNTF, LIF, and CT-1 defines cooperative and distinct roles of these neurotrophic factors for motoneuron maintenance and function. Holtmann, B., Wiese, S., Samsam, M., Grohmann, K., Pennica, D., Martini, R., Sendtner, M. J. Neurosci. (2005) [Pubmed]
  32. Anti-GQ1b ganglioside antibodies mediate complement-dependent destruction of the motor nerve terminal. O'Hanlon, G.M., Plomp, J.J., Chakrabarti, M., Morrison, I., Wagner, E.R., Goodyear, C.S., Yin, X., Trapp, B.D., Conner, J., Molenaar, P.C., Stewart, S., Rowan, E.G., Willison, H.J. Brain (2001) [Pubmed]
  33. Development of neuromuscular junctions in the mouse esophagus: morphology suggests a role for enteric coinnervation during maturation of vagal myoneural contacts. Breuer, C., Neuhuber, W.L., Wörl, J. J. Comp. Neurol. (2004) [Pubmed]
  34. Effect of HI-6, applied into the cerebral ventricles, on the inhibition of brain acetylcholinesterase by soman in rats. Sket, D., Brzin, M. Neuropharmacology (1986) [Pubmed]
  35. Successful intramuscular neurotization is dependent on the denervation period. A histomorphological study of the gracilis muscle in rats. Keilhoff, G., Fansa, H. Muscle Nerve (2005) [Pubmed]
  36. Effects of acrylamide and other sulfhydryl compounds in vivo and in vitro on staining of motor nerve terminals by the zinc iodide-osmium technique. Kemplay, S., Cavanagh, J.B. Muscle Nerve (1984) [Pubmed]
 
WikiGenes - Universities