The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Laryngeal Mucosa

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Laryngeal Mucosa

 

High impact information on Laryngeal Mucosa

  • These results demonstrated that infection of laryngeal epithelium by low-risk human papillomaviruses elevates the EGFR by posttranslational mechanisms, increasing its responsiveness to ligand-mediated activation [1].
  • p53 expression in normal, dysplastic, and neoplastic laryngeal epithelium. Absence of a correlation with prognostic factors [6].
  • 1. Action potentials were recorded from single afferent units of the superior laryngeal nerves in neonatal and adult sheep, cats and monkeys when liquids were passed over the laryngeal mucosa [7].
  • RESULTS: The stroma in normal laryngeal mucosa and SILs contained scattered CD34-positive cells, but there were no SMA-positive myofibroblasts [8].
  • Formalin-fixed, paraffin-embedded tumor blocks from 44 consecutive patients with primary HNSCC and 5 specimens of benign pharyngeal and laryngeal mucosa were retrieved for immunohistochemical analysis [9].
 

Chemical compound and disease context of Laryngeal Mucosa

  • Experiments were undertaken to learn if the nonadrenergic noncholinergic inhibitory nervous system (NANCIS) in feline airways could be activated reflexly either by mechanically stimulating the laryngeal mucosa or by inducing acute bronchospasm with boluses of 5-hydroxytryptamine (5HT) injected intravenously [10].
  • The levels of retinol, retinol-binding protein (RBP), and prealbumin (PALB) in 53 patients with head and neck squamous cell carcinomas of various size and metastatic nature were significantly lower than in tumor-free individuals and patients suffering from premalignant lesions of the laryngeal mucosa [11].
 

Biological context of Laryngeal Mucosa

 

Anatomical context of Laryngeal Mucosa

 

Associations of Laryngeal Mucosa with chemical compounds

 

Gene context of Laryngeal Mucosa

  • PCNA analysis as an index of proliferating cells was also performed in 32 cases of laryngeal cancer, six cases of pre-cancerous lesions and nine cases of normal laryngeal mucosa [26].
  • The hTERT index was calculated to express the relative quantity levels of hTERT mRNA. hTERT mRNA was detectable in 10 out of 30 (33%) laryngeal tissues covered by normal and/or reactively hyperplastic laryngeal epithelium and 23 out of 30 LSCCs (77%) [18].
  • Fibers positive for VRL-1 were detected in the laryngeal epithelium and lamina propria [27].
  • Given the correlation between laryngopharyngeal reflux disease and CA-III depletion, it is highly plausible that CA-III depletion, as a result of pepsin exposure during laryngopharyngeal reflux, predisposes laryngeal mucosa to reflux-related inflammatory damage [28].
  • The expression of specific keratin polypeptides was studied in different degrees of dysplasia with regard to the subunits expressed in normal and carcinomatous laryngeal epithelium in the same patient [29].
 

Analytical, diagnostic and therapeutic context of Laryngeal Mucosa

References

  1. Elevation of the epidermal growth factor receptor and dependent signaling in human papillomavirus-infected laryngeal papillomas. Johnston, D., Hall, H., DiLorenzo, T.P., Steinberg, B.M. Cancer Res. (1999) [Pubmed]
  2. Expression of ras oncogene p21 protein in normal and neoplastic laryngeal tissues: correlation with histopathological features and epidermal growth factor receptors. Scambia, G., Catozzi, L., Benedetti Panici, P., Ferrandina, G., Almadori, G., Paludetti, G., Cadoni, G., Distefano, M., Piffanelli, A., Mancuso, S. Br. J. Cancer (1994) [Pubmed]
  3. Irregular expression of hyaluronan and its CD44 receptor is associated with metastatic phenotype in laryngeal squamous cell carcinoma. Hirvikoski, P., Tammi, R., Kumpulainen, E., Virtaniemi, J., Parkkinen, J.J., Tammi, M., Johansson, R., Agren, U., Karhunen, J., Kosma, V.M. Virchows Arch. (1999) [Pubmed]
  4. Study on ceramide expression and DNA content in patients with healthy mucosa, leukoplakia, and carcinoma of the larynx. Chi, F.L., Yuan, Y.S., Wang, S.Y., Wang, Z.M. Arch. Otolaryngol. Head Neck Surg. (2004) [Pubmed]
  5. Expression of TGF-beta 1 protein and mRNA and the effect on the tissue remodeling in laryngeal carcinomas. Hagedorn, H., Sauer, U., Schleicher, E., Nerlich, A. Anticancer Res. (1999) [Pubmed]
  6. p53 expression in normal, dysplastic, and neoplastic laryngeal epithelium. Absence of a correlation with prognostic factors. Nadal, A., Campo, E., Pinto, J., Mallofré, C., Palacín, A., Arias, C., Traserra, J., Cardesa, A. J. Pathol. (1995) [Pubmed]
  7. Liquid-sensitive laryngeal receptors in the developing sheep, cat and monkey. Harding, R., Johnson, P., McClelland, M.E. J. Physiol. (Lond.) (1978) [Pubmed]
  8. Expression of CD34, alpha-smooth muscle actin, and transforming growth factor beta1 in squamous intraepithelial lesions and squamous cell carcinoma of the larynx and hypopharynx. Kojc, N., Zidar, N., Vodopivec, B., Gale, N. Hum. Pathol. (2005) [Pubmed]
  9. Expression of protein tyrosine kinases in head and neck squamous cell carcinomas. Ongkeko, W.M., Altuna, X., Weisman, R.A., Wang-Rodriguez, J. Am. J. Clin. Pathol. (2005) [Pubmed]
  10. Reflex activation of the nonadrenergic noncholinergic inhibitory nervous system in feline airways. Szarek, J.L., Gillespie, M.N., Altiere, R.J., Diamond, L. Am. Rev. Respir. Dis. (1986) [Pubmed]
  11. Plasma levels of retinol and retinol-binding protein in patients with squamous cell carcinomas of the head and neck region. Bichler, E. Archives of oto-rhino-laryngology. (1982) [Pubmed]
  12. Differential major histocompatibility complex class II locus expression on human laryngeal epithelium. Rees, L.E., Ayoub, O., Haverson, K., Birchall, M.A., Bailey, M. Clin. Exp. Immunol. (2003) [Pubmed]
  13. Acute laryngotracheitis in the rat induced by Sendai virus: the influx of six different types of immunocompetent cells into the laryngeal mucosa differs strongly between the subglottic and the glottic compartment. Jecker, P., McWilliam, A., Marsh, A., Holt, P.G., Mann, W.J., Pabst, R., Westermann, J. Laryngoscope (2001) [Pubmed]
  14. The EGF receptor system in head and neck carcinomas and normal tissues. Immunohistochemical and quantitative studies. Christensen, M.E. Danish medical bulletin. (1998) [Pubmed]
  15. Xibornol: multiple dose pharmacokinetics and diffusion in lung, tonsillar tissue and laryngeal mucosa. Scaglione, F., Trazzi, R., Odero, A., Sambataro, G., Savio, G., Ferrara, F., Fraschini, F. International journal of clinical pharmacology research. (1988) [Pubmed]
  16. Intraepithelial neoplasia of the larynx. A clinicopathologic study of six cases with DNA analysis. Crissman, J.D., Fu, Y.S. Arch. Otolaryngol. Head Neck Surg. (1986) [Pubmed]
  17. Calbindin D28k-immunoreactive afferent nerve endings in the laryngeal mucosa. Yamamoto, Y., Atoji, Y., Suzuki, Y. Anat. Rec. (2000) [Pubmed]
  18. Quantitative measurement of telomerase catalytic subunit (hTERT) mRNA in laryngeal squamous cell carcinomas. Luzar, B., Poljak, M., Marin, I.J., Fischinger, J., Gale, N. Anticancer Res. (2001) [Pubmed]
  19. Substance P immunoreactive nerve fibers of the canine laryngeal mucosa. Shin, T., Wada, S., Maeyama, T., Watanabe, S. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. (1987) [Pubmed]
  20. Mast cells in the laryngeal mucosa of the rat. Effect of compound 48/80 and dexamethasone: a quantitative and immunohistochemical study at the light- and electron-microscopic levels. Lidegran, M., Domeij, S., Forsgren, S., Dahlqvist, A. Acta anatomica. (1996) [Pubmed]
  21. Pathways and mechanisms involved in neural control of laryngeal submucosal gland secretion. Hejal, R., Strohl, K.P., Erokwu, B., Cherniack, N.S., Haxhiu, M.A. J. Appl. Physiol. (1993) [Pubmed]
  22. Laryngeal inputs in defensive airway reflexes in humans. Nishino, T., Isono, S., Tanaka, A., Ishikawa, T. Pulmonary pharmacology & therapeutics. (2004) [Pubmed]
  23. Effects of neuropeptides and capsaicin on tracheobronchial blood flow of the pig. Matran, R., Alving, K., Martling, C.R., Lacroix, J.S., Lundberg, J.M. Acta Physiol. Scand. (1989) [Pubmed]
  24. Effect of topical diphenhydramine on the laryngeal chemoreflex. Boyer, H.C., Downs, D.H., Goding, G.S., Pernell, K.J. Arch. Otolaryngol. Head Neck Surg. (1996) [Pubmed]
  25. The effects of lignocaine spray on the laryngeal mucosa of the cat. Rex, M.A., Sutton, R.H., Reilly, J.S. Anaesthesia and intensive care. (1983) [Pubmed]
  26. Expression of EGF, EGFR and PCNA in laryngeal lesions. Wen, Q.H., Nishimura, T., Miwa, T., Nagayama, I., Furukawa, M. The Journal of laryngology and otology. (1995) [Pubmed]
  27. Capsaicin receptor expression in rat laryngeal innervation. Uno, T., Koike, S., Bamba, H., Hirota, R., Hisa, Y. The Annals of otology, rhinology, and laryngology. (2004) [Pubmed]
  28. Pepsin and carbonic anhydrase isoenzyme III as diagnostic markers for laryngopharyngeal reflux disease. Johnston, N., Knight, J., Dettmar, P.W., Lively, M.O., Koufman, J. Laryngoscope (2004) [Pubmed]
  29. Expression of low molecular weight cytokeratin proteins in laryngeal dysplasia. Hellquist, H.B., Olofsson, J. APMIS (1988) [Pubmed]
 
WikiGenes - Universities