The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Lentiviruses, Primate

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Lentiviruses, Primate

 

High impact information on Lentiviruses, Primate

 

Chemical compound and disease context of Lentiviruses, Primate

 

Biological context of Lentiviruses, Primate

 

Anatomical context of Lentiviruses, Primate

  • The primate immunodeficiency virus Vif proteins are essential for replication in appropriate cultured cell systems and, presumably, for the establishment of productive infections in vivo [16].
  • The ability of primate lentiviruses to effectively use human and rhesus dendritic cells in virus transmission without the cells becoming directly infected suggests that these viruses have taken advantage of a conserved dendritic cell mechanism in which DC-SIGN family molecules are significant contributors but not the only participants [17].
  • However, we found that APJ could not be detected by FACS analysis on cell lines commonly used to propagate primate lentiviruses, nor was it expressed on human PBMC cultured under a variety of conditions [18].
 

Gene context of Lentiviruses, Primate

References

  1. HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization. Baur, A.S., Sawai, E.T., Dazin, P., Fantl, W.J., Cheng-Mayer, C., Peterlin, B.M. Immunity (1994) [Pubmed]
  2. The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes. Spina, C.A., Kwoh, T.J., Chowers, M.Y., Guatelli, J.C., Richman, D.D. J. Exp. Med. (1994) [Pubmed]
  3. An internalization signal in the simian immunodeficiency virus transmembrane protein cytoplasmic domain modulates expression of envelope glycoproteins on the cell surface. Sauter, M.M., Pelchen-Matthews, A., Bron, R., Marsh, M., LaBranche, C.C., Vance, P.J., Romano, J., Haggarty, B.S., Hart, T.K., Lee, W.M., Hoxie, J.A. J. Cell Biol. (1996) [Pubmed]
  4. Inhibiting the Arp2/3 complex limits infection of both intracellular mature vaccinia virus and primate lentiviruses. Komano, J., Miyauchi, K., Matsuda, Z., Yamamoto, N. Mol. Biol. Cell (2004) [Pubmed]
  5. Identification of the Nef-associated kinase as p21-activated kinase 2. Renkema, G.H., Manninen, A., Mann, D.A., Harris, M., Saksela, K. Curr. Biol. (1999) [Pubmed]
  6. Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Piguet, V., Gu, F., Foti, M., Demaurex, N., Gruenberg, J., Carpentier, J.L., Trono, D. Cell (1999) [Pubmed]
  7. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Farzan, M., Mirzabekov, T., Kolchinsky, P., Wyatt, R., Cayabyab, M., Gerard, N.P., Gerard, C., Sodroski, J., Choe, H. Cell (1999) [Pubmed]
  8. A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Rizzuto, C.D., Wyatt, R., Hernández-Ramos, N., Sun, Y., Kwong, P.D., Hendrickson, W.A., Sodroski, J. Science (1998) [Pubmed]
  9. Human immunodeficiency virus type 1 Vpr-mediated G(2) cell cycle arrest: Vpr interferes with cell cycle signaling cascades by interacting with the B subunit of serine/threonine protein phosphatase 2A. Hrimech, M., Yao, X.J., Branton, P.E., Cohen, E.A. EMBO J. (2000) [Pubmed]
  10. Equine infectious anemia virus tat: insights into the structure, function, and evolution of lentivirus trans-activator proteins. Dorn, P., DaSilva, L., Martarano, L., Derse, D. J. Virol. (1990) [Pubmed]
  11. Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other primate immunodeficiency viruses. Braaten, D., Franke, E.K., Luban, J. J. Virol. (1996) [Pubmed]
  12. Human N-myristoyltransferases form stable complexes with lentiviral nef and other viral and cellular substrate proteins. Hill, B.T., Skowronski, J. J. Virol. (2005) [Pubmed]
  13. Nef-induced CD4 and major histocompatibility complex class I (MHC-I) down-regulation are governed by distinct determinants: N-terminal alpha helix and proline repeat of Nef selectively regulate MHC-I trafficking. Mangasarian, A., Piguet, V., Wang, J.K., Chen, Y.L., Trono, D. J. Virol. (1999) [Pubmed]
  14. Modulation of cellular protein trafficking by human immunodeficiency virus type 1 Nef: role of the acidic residue in the ExxxLL motif. Coleman, S.H., Madrid, R., Van Damme, N., Mitchell, R.S., Bouchet, J., Servant, C., Pillai, S., Benichou, S., Guatelli, J.C. J. Virol. (2006) [Pubmed]
  15. Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. Hauber, J., Malim, M.H., Cullen, B.R. J. Virol. (1989) [Pubmed]
  16. The regulation of primate immunodeficiency virus infectivity by Vif is cell species restricted: a role for Vif in determining virus host range and cross-species transmission. Simon, J.H., Miller, D.L., Fouchier, R.A., Soares, M.A., Peden, K.W., Malim, M.H. EMBO J. (1998) [Pubmed]
  17. Rhesus macaque dendritic cells efficiently transmit primate lentiviruses independently of DC-SIGN. Wu, L., Bashirova, A.A., Martin, T.D., Villamide, L., Mehlhop, E., Chertov, A.O., Unutmaz, D., Pope, M., Carrington, M., KewalRamani, V.N. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  18. Expression and coreceptor function of APJ for primate immunodeficiency viruses. Puffer, B.A., Sharron, M., Coughlan, C.M., Baribaud, F., McManus, C.M., Lee, B., David, J., Price, K., Horuk, R., Tsang, M., Doms, R.W. Virology (2000) [Pubmed]
  19. G protein-coupled receptors in HIV and SIV entry: new perspectives on lentivirus-host interactions and on the utility of animal models. Unutmaz, D., KewalRamani, V.N., Littman, D.R. Semin. Immunol. (1998) [Pubmed]
  20. Nef proteins from diverse groups of primate lentiviruses downmodulate CXCR4 to inhibit migration to the chemokine stromal derived factor 1. Hrecka, K., Swigut, T., Schindler, M., Kirchhoff, F., Skowronski, J. J. Virol. (2005) [Pubmed]
  21. Differential incorporation of uracil DNA glycosylase UNG2 into HIV-1, HIV-2, and SIV(MAC) viral particles. Priet, S., Navarro, J.M., Gros, N., Quérat, G., Sire, J. Virology (2003) [Pubmed]
  22. HIV type I envelope determinants for use of the CCR2b, CCR3, STRL33, and APJ coreceptors. Hoffman, T.L., Stephens, E.B., Narayan, O., Doms, R.W. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  23. Human immunodeficiency virus type 1 coreceptors participate in postentry stages in the virus replication cycle and function in simian immunodeficiency virus infection. Chackerian, B., Long, E.M., Luciw, P.A., Overbaugh, J. J. Virol. (1997) [Pubmed]
 
WikiGenes - Universities