The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Dextrins     (3R,4S,5S,6R)-2- [(2R,3S,4R,5R)-4,5...

Synonyms: Caloreen, Dextrine, Fortodex, Nutriose, Dextrid, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Dextrins

 

Psychiatry related information on Dextrins

  • To further investigate carbohydrate satiety in the Zucker rat, the short-term feeding behavior of obese and lean rats was observed following intragastric infusions (7.2 kcal in 10 ml) of corn starch and the starch hydrolysates Polycose and dextrin [6].
  • Upon multivariate analysis, icodextrin contributed significantly to the improvement of patients' mental health, general health, and symptoms such as muscle spasms or twitching, cramps during an exchange or treatment, cramps after an exchange or treatment, itchy skin, and faintness or dizziness [7].
 

High impact information on Dextrins

 

Chemical compound and disease context of Dextrins

  • The present study investigated the effect of peritonitis on peritoneal fluid and solute transport characteristics using glucose and polyglucose (icodextrin) solutions [13].
  • Delivery of the sulfated polysaccharide dextrin 2-sulfate by the intraperitoneal route to the lymphatic circulation resulted in a clinically significant improvement in Kaposi's sarcoma in three patients [14].
  • Amylolytic activity was primarily cell associated when Clostridium acetobutylicum was grown on glucose or maltose and primarily extracellular when grown on dextrin or starch [15].
  • Those diets containing intermediate levels of carbohydrate (8 or 24% of sucrose or dextrin), or 60% dextrin starch, in comparison to diets containing 60% refined carbohydrates, extended life span and produced a more protracted pathogenesis, but were unable to circumvent eventual severe hyperglycemia and islet destruction [16].
  • Fish fed the dextrin diet had significantly (P < 0.05) greater weight gain, feed efficiency ratio and protein efficiency ratio but lower plasma glucose concentrations than fish fed the glucose diets irrespective of the level of chromic oxide supplementation [17].
 

Biological context of Dextrins

  • However, p30 was less active than intact CenA against microcrystalline cellulose implying a critical role for the binding domain of CenA in the hydrolysis of crystalline substrate [18].
  • The 7.5% icodextrin dialysis fluid induces through lipid peroxidation substantial genomic damage, which, in turn, sets the biological mechanisms leading to protective cellular suicide in motion [19].
  • Respiratory exchange was measured during 14 consecutive hours in six lean and six obese individuals after ingestion of 500 g of dextrin maltose to investigate and compare their capacity for net de novo lipogenesis [20].
  • In vivo, rabbits treated IP (100 ml) with rAd-betagal 1 x 10(9) P/ml in icodextrin showed improved transgene expression throughout the peritoneal wall compared to rAd-betagal in PBS [5].
  • Icodextrin-induced lipid peroxidation disrupts the mesothelial cell cycle engine [19].
 

Anatomical context of Dextrins

  • The renal toxicity of the Schardinger dextrins, alpha and beta-cyclodextrin, is manifested as a series of alterations in the vacuolar organelles of the proximal convoluted tubule [21].
  • The dimeric enzyme sucrase-isomaltase (a complex of sucrose alpha-glucohydrolase, EC 3.2.1.48 and oligo-1,6-glucosidase (dextrin 6 alpha-D-glucanohydrolase), EC 3.2.1.10) of the rat small intestinal microvillus membrane is synthesized as a single chain enzymatically active precursor protein [22].
  • Dextrin 2-sulphate accumulated in peritoneal macrophages and induced the release of MIP-1alpha and MIP-1beta from these cells in vitro [4].
  • Similar differences in total body water were observed, largely explained by reduced extracellular fluid volume in those receiving icodextrin, who also achieved better ultrafiltration and total sodium losses at 3 mo (P < 0.05) and had better maintenance of urine volume at 6 mo (P = 0.039) [23].
  • In animals, these results show that IP rAd gene therapy can be improved with the use of icodextrin, and suggest that prolonged retention and distribution in the peritoneal cavity is an important factor [5].
 

Associations of Dextrins with other chemical compounds

 

Gene context of Dextrins

 

Analytical, diagnostic and therapeutic context of Dextrins

  • Isothermal titration microcalorimetry is combined with solution-depletion isotherm data to analyze the thermodynamics of binding of the cellulose-binding domain (CBD) from the beta-1,4-(exo)glucanase Cex of Cellulomonas fimi to insoluble bacterial microcrystalline cellulose [2].
  • In vivo, the efficacy of dl922-947 when delivered in PBS or icodextrin to female nude mice bearing IGROV1 xenografts was determined [3].
  • Microcrystalline cellulose thin-layer chromatography resolved the peak into one major and four minor components, all with similar absorption spectra [33].
  • Rats were divided in five groups: polypropylene mesh only (control group), addition of Sepracoat or Icodextrin solution to polypropylene mesh, Sepramesh (polypropylene mesh with Seprafilm coating), and Parietex composite mesh (polyester mesh with collagen coating) [34].
  • With increasing doses of dextrin 2-sulphate, the fall in viral load was seen during the period of drug administration and again 2 months after completing treatment [4].

References

  1. Allergic reactions to icodextrin in patients with renal failure. Divino Fiho, J.C. Lancet (2000) [Pubmed]
  2. Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Creagh, A.L., Ong, E., Jervis, E., Kilburn, D.G., Haynes, C.A. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  3. Activity of the adenoviral E1A deletion mutant dl922-947 in ovarian cancer: comparison with E1A wild-type viruses, bioluminescence monitoring, and intraperitoneal delivery in icodextrin. Lockley, M., Fernandez, M., Wang, Y., Li, N.F., Conroy, S., Lemoine, N., McNeish, I. Cancer Res. (2006) [Pubmed]
  4. Reduction of the viral load of HIV-1 after the intraperitoneal administration of dextrin 2-sulphate in patients with AIDS. Shaunak, S., Thornton, M., John, S., Teo, I., Peers, E., Mason, P., Krausz, T., Davies, D.S. AIDS (1998) [Pubmed]
  5. Development of a formulation that enhances gene expression and efficacy following intraperitoneal administration in rabbits and mice. Engler, H., Machemer, T.R., Schluep, T., Wen, S.F., Quijano, E., Wills, K.N., Harper, A.E., Maneval, D.C., Conroy, S.E. Mol. Ther. (2003) [Pubmed]
  6. Satiety in the obese Zucker rat: effects of carbohydrate type and acarbose (Bay g 5421). Maggio, C.A., Vasselli, J.R. Physiol. Behav. (1989) [Pubmed]
  7. Early quality of life benefits of icodextrin in peritoneal dialysis. Guo, A., Wolfson, M., Holt, R. Kidney Int. Suppl. (2002) [Pubmed]
  8. Formation of methylnitrosocyanamide from methylguanidine and sodium nitrite in simulated gastric juice and in stomachs of rats: quantitative estimation by a mutagenicity assay. Ishizawa, M., Utsunomiya, T., Kinoshita, N., Endo, H. J. Natl. Cancer Inst. (1979) [Pubmed]
  9. Allergic reactions to the polymeric glucose-based peritoneal dialysis fluid icodextrin in patients with renal failure. Goldsmith, D., Jayawardene, S., Sabharwal, N., Cooney, K. Lancet (2000) [Pubmed]
  10. The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Linder, M., Teeri, T.T. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  11. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. Fierobe, H.P., Mingardon, F., Mechaly, A., Bélaïch, A., Rincon, M.T., Pagès, S., Lamed, R., Tardif, C., Bélaïch, J.P., Bayer, E.A. J. Biol. Chem. (2005) [Pubmed]
  12. The malZ gene of Escherichia coli, a member of the maltose regulon, encodes a maltodextrin glucosidase. Tapio, S., Yeh, F., Shuman, H.A., Boos, W. J. Biol. Chem. (1991) [Pubmed]
  13. Effect of peritonitis on peritoneal transport characteristics: glucose solution versus polyglucose solution. Wang, T., Cheng, H.H., Heimbürger, O., Waniewski, J., Bergström, J., Lindholm, B. Kidney Int. (2000) [Pubmed]
  14. Anti-Kaposi's sarcoma and antiangiogenic activities of sulfated dextrins. Thornton, M., Barkley, L., Mason, J.C., Shaunak, S. Antimicrob. Agents Chemother. (1999) [Pubmed]
  15. Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824. Annous, B.A., Blaschek, H.P. Appl. Environ. Microbiol. (1990) [Pubmed]
  16. Influence of dietary carbohydrate on the induction of diabetes in C57BL/KsJ-db/db diabetes mice. Leiter, E.H., Coleman, D.L., Ingram, D.K., Reynolds, M.A. J. Nutr. (1983) [Pubmed]
  17. Chromic oxide inclusion in the diet does not affect glucose utilization or chromium retention by channel catfish, Ictalurus punctatus. Ng, W.K., Wilson, R.P. J. Nutr. (1997) [Pubmed]
  18. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. Gilkes, N.R., Warren, R.A., Miller, R.C., Kilburn, D.G. J. Biol. Chem. (1988) [Pubmed]
  19. Icodextrin-induced lipid peroxidation disrupts the mesothelial cell cycle engine. Gotloib, L., Wajsbrot, V., Shostak, A. Free Radic. Biol. Med. (2003) [Pubmed]
  20. Carbohydrate metabolism and de novo lipogenesis in human obesity. Acheson, K.J., Schutz, Y., Bessard, T., Flatt, J.P., Jéquier, E. Am. J. Clin. Nutr. (1987) [Pubmed]
  21. Cyclodextrin nephrosis in the rat. Frank, D.W., Gray, J.E., Weaver, R.N. Am. J. Pathol. (1976) [Pubmed]
  22. Biosynthesis of sucrase-isomaltase. Purification and NH2-terminal amino acid sequence of the rat sucrase-isomaltase precursor (pro-sucrase-isomaltase) from fetal intestinal transplants. Hauri, H.P., Wacker, H., Rickli, E.E., Bigler-Meier, B., Quaroni, A., Semenza, G. J. Biol. Chem. (1982) [Pubmed]
  23. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. Davies, S.J., Woodrow, G., Donovan, K., Plum, J., Williams, P., Johansson, A.C., Bosselmann, H.P., Heimbürger, O., Simonsen, O., Davenport, A., Tranaeus, A., Divino Filho, J.C. J. Am. Soc. Nephrol. (2003) [Pubmed]
  24. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. Finkelstein, F., Healy, H., Abu-Alfa, A., Ahmad, S., Brown, F., Gehr, T., Nash, K., Sorkin, M., Mujais, S. J. Am. Soc. Nephrol. (2005) [Pubmed]
  25. Melittin: an allergen of honeybee venom. Paull, B.R., Yunginger, J.W., Gleich, G.J. J. Allergy Clin. Immunol. (1977) [Pubmed]
  26. The effect of dietary fiber on postprandial serum digoxin concentration in man. Kasper, H., Zilly, W., Fassl, H., Fehle, F. Am. J. Clin. Nutr. (1979) [Pubmed]
  27. Macronutrient-specific dietary selection in rodents and its neural bases. Thibault, L., Booth, D.A. Neuroscience and biobehavioral reviews. (1999) [Pubmed]
  28. Chronic ethanol feeding suppresses beta-adrenergic receptor-stimulated lipolysis in adipocytes isolated from epididymal fat. Kang, L., Nagy, L.E. Endocrinology (2006) [Pubmed]
  29. Peritoneal transport characteristics with glucose polymer based dialysate. Ho-dac-Pannekeet, M.M., Schouten, N., Langendijk, M.J., Hiralall, J.K., de Waart, D.R., Struijk, D.G., Krediet, R.T. Kidney Int. (1996) [Pubmed]
  30. Enterotoxin formation by Clostridium perfringens type A in a defined medium. Labbe, R.G. Appl. Environ. Microbiol. (1981) [Pubmed]
  31. Interaction of the transactivating protein HIV-1 tat with sulphated polysaccharides. Watson, K., Gooderham, N.J., Davies, D.S., Edwards, R.J. Biochem. Pharmacol. (1999) [Pubmed]
  32. Cloning and expression of multiple cellulase cDNAs from the anaerobic rumen fungus Neocallimastix patriciarum in Escherichia coli. Xue, G.P., Orpin, C.G., Gobius, K.S., Aylward, J.H., Simpson, G.D. J. Gen. Microbiol. (1992) [Pubmed]
  33. A phenylalanine transfer RNA azo dye complex in livers of rats fed diets containing 3'-methyl-4-dimethylaminoazobenzene. Daoud, A.H., Griffin, A.C. Cancer Res. (1976) [Pubmed]
  34. Prevention of adhesion to prosthetic mesh: comparison of different barriers using an incisional hernia model. van 't Riet, M., de Vos van Steenwijk, P.J., Bonthuis, F., Marquet, R.L., Steyerberg, E.W., Jeekel, J., Bonjer, H.J. Ann. Surg. (2003) [Pubmed]
 
WikiGenes - Universities