The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Selenomonas

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Selenomonas

 

High impact information on Selenomonas

  • Cadaverine covalently linked to a peptidoglycan is an essential constituent of the peptidoglycan necessary for the normal growth in Selenomonas ruminantium [6].
  • Cadaverine links covalently to the D-glutamic acid residue of the peptidoglycan in Selenomonas ruminantium, a strictly anaerobic Gram-negative bacterium (Kamio, Y., Itoh, Y., and Terawaki, Y. (1981) J. Bacteriol. 146, 49-53) [6].
  • Sequences from a tannin-tolerant Selenomonas ruminantium isolate (EAT2) that hydrolyzes gallic acid were identified [7].
  • A gene, cobA + hemD, from Selenomonas ruminantium encodes a bifunctional enzyme involved in the synthesis of vitamin B12 [8].
  • Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes [9].
 

Chemical compound and disease context of Selenomonas

  • Biosynthesis of cadaverine-containing peptidoglycan in Selenomonas ruminantium [10].
  • Compared to growth on hexoses, the same array of fermentation acids was produced upon growth on xylans for most strains; however, reduced lactate levels were observed for B. fibrisolvens 49 and Selenomonas ruminantium HD4 [11].
  • Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium [12].
  • Washed cells of strain H18, a newly isolated ruminal selenomonad, decarboxylated succinate 25-fold faster than Selenomonas ruminantium HD4 (130 versus 5 nmol min-1 mg of protein-1, respectively) [13].
  • Xylose uptake by the ruminal bacterium Selenomonas ruminantium [14].
 

Biological context of Selenomonas

 

Anatomical context of Selenomonas

 

Gene context of Selenomonas

 

Analytical, diagnostic and therapeutic context of Selenomonas

References

  1. Biological and chemical characterization of lipopolysaccharide from Selenomonas spp. in human periodontal pockets. Kurimoto, T., Tachibana, C., Suzuki, M., Watanabe, T. Infect. Immun. (1986) [Pubmed]
  2. p-Coumaroyl and feruloyl arabinoxylans from plant cell walls as substrates for ruminal bacteria. Akin, D.E., Borneman, W.S., Rigsby, L.L., Martin, S.A. Appl. Environ. Microbiol. (1993) [Pubmed]
  3. Synthesis of alpha-ketoglutarate by reductive carboxylation of succinate in Veillonella, Selenomonas, and Bacteriodes species. Allison, M.J., Robinson, I.M., Baetz, A.L. J. Bacteriol. (1979) [Pubmed]
  4. Comparative in-vitro activity of azithromycin, macrolides (erythromycin, clarithromycin and spiramycin) and streptogramin RP 59500 against oral organisms. Williams, J.D., Maskell, J.P., Shain, H., Chrysos, G., Sefton, A.M., Fraser, H.Y., Hardie, J.M. J. Antimicrob. Chemother. (1992) [Pubmed]
  5. Ability of Acidaminococcus fermentans to oxidize trans-aconitate and decrease the accumulation of tricarballylate, a toxic end product of ruminal fermentation. Cook, G.M., Wells, J.E., Russell, J.B. Appl. Environ. Microbiol. (1994) [Pubmed]
  6. Cadaverine covalently linked to a peptidoglycan is an essential constituent of the peptidoglycan necessary for the normal growth in Selenomonas ruminantium. Kamio, Y., Pösö, H., Terawaki, Y., Paulin, L. J. Biol. Chem. (1986) [Pubmed]
  7. Specific PCR assay for a tannin-tolerant selenomonas ruminantium isolate, derived from helicase coding sequences. Bishop, R., Obura, M., Odongo, D., Odenyo, A. Appl. Environ. Microbiol. (2004) [Pubmed]
  8. A gene, cobA + hemD, from Selenomonas ruminantium encodes a bifunctional enzyme involved in the synthesis of vitamin B12. Anderson, P.J., Entsch, B., McKay, D.B. Gene (2001) [Pubmed]
  9. Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes. Takatsuka, Y., Yamaguchi, Y., Ono, M., Kamio, Y. J. Bacteriol. (2000) [Pubmed]
  10. Biosynthesis of cadaverine-containing peptidoglycan in Selenomonas ruminantium. Kamio, Y., Terawaki, Y., Izaki, K. J. Biol. Chem. (1982) [Pubmed]
  11. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria. Hespell, R.B., Wolf, R., Bothast, R.J. Appl. Environ. Microbiol. (1987) [Pubmed]
  12. Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium. Melville, S.B., Michel, T.A., Macy, J.M. J. Bacteriol. (1988) [Pubmed]
  13. Succinate transport by a ruminal selenomonad and its regulation by carbohydrate availability and osmotic strength. Strobel, H.J., Russell, J.B. Appl. Environ. Microbiol. (1991) [Pubmed]
  14. Xylose uptake by the ruminal bacterium Selenomonas ruminantium. Williams, D.K., Martin, S.A. Appl. Environ. Microbiol. (1990) [Pubmed]
  15. Generation of a membrane potential by sodium-dependent succinate efflux in Selenomonas ruminantium. Michel, T.A., Macy, J.M. J. Bacteriol. (1990) [Pubmed]
  16. Molecular characterization, enzyme properties and transcriptional regulation of phosphoenolpyruvate carboxykinase and pyruvate kinase in a ruminal bacterium, Selenomonas ruminantium. Asanuma, N., Hino, T. Microbiology (Reading, Engl.) (2001) [Pubmed]
  17. Hexose phosphorylation by the ruminal bacterium Selenomonas ruminantium. Martin, S.A. J. Dairy Sci. (1996) [Pubmed]
  18. The characterization and ultrastructure of two new strains of Butyrivibrio. Cheng, K.J., Phillippe, R.C., McLean, R.J., Costerton, J.W. Can. J. Microbiol. (1989) [Pubmed]
  19. pSRD191, a new member of RepL replicating plasmid family from Selenomonas ruminantium. Sprincova, A., Javorsky, P., Pristas, P. Plasmid (2005) [Pubmed]
  20. Cadaverine is covalently linked to peptidoglycan in Selenomonas ruminantium. Kamio, Y., Itoh, Y., Terawaki, Y., Kusano, T. J. Bacteriol. (1981) [Pubmed]
  21. Purification and properties of Selenomonas ruminantium lysine decarboxylase. Kamio, Y., Terawaki, Y. J. Bacteriol. (1983) [Pubmed]
  22. Outer membrane proteins and cell surface structure of Selenomonas ruminantium. Kamio, Y., Takahashi, H. J. Bacteriol. (1980) [Pubmed]
  23. Cloning of the O-acetylhomoserine sulfhydrylase gene from the ruminal bacterium Selenomonas ruminantium HD4. Qin, X., Martin, S.A. Curr. Microbiol. (2004) [Pubmed]
  24. Cloning of the L-lactate dehydrogenase gene from the ruminal bacterium Selenomonas ruminantium HD4. Evans, J.D., Martin, S.A. Curr. Microbiol. (2002) [Pubmed]
  25. A flavoprotein encoded in Selenomonas ruminantium is characterized after expression in Escherichia coli. Anderson, P.J., Cole, L.J., McKay, D.B., Entsch, B. Protein Expr. Purif. (2002) [Pubmed]
  26. Localization of phytase in Selenomonas ruminantium and Mitsuokella multiacidus by transmission electron microscopy. D'Silva, C.G., Bae, H.D., Yanke, L.J., Cheng, K.J., Selinger, L.B. Can. J. Microbiol. (2000) [Pubmed]
 
WikiGenes - Universities