The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Radiation Chimera

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on Radiation Chimera

  • Results obtained with bone marrow radiation chimeras suggest that the altered distribution of T cell subsets is not a direct effect of c-fos expression within the T cell lineage [1].
  • Indeed, Ikkbeta-/- radiation chimeras exibit elevated circulating TNFalpha, and Ikkbeta-/- thymocytes display increased TNFalpha sensitivity [2].
  • We found that peripheral deletion was defective in radiation chimeras with non-functional tissue FasL, regardless of the FasL status of the bone marrow-derived cells [3].
  • Analyses of TNFR1/RelA-deficient embryonic tissues and of radiation chimeras suggest that the dependence on RelA is manifest not in hematopoietic cells but rather in radioresistant stromal cells needed for the development of secondary lymphoid organs [4].
  • Furthermore, using radiation chimeras we demonstrate that this developmental block is due to the absence of Syk in the B cells themselves [5].

Biological context of Radiation Chimera


Anatomical context of Radiation Chimera


Associations of Radiation Chimera with chemical compounds


Gene context of Radiation Chimera

  • Since uPAR is detectable in both hemopoietic and non-hemopoietic cells, radiation chimera were prepared [17].
  • Thus, inborn resistance of radiation chimeras was found to be independent of Mx-gene expression in cells of the hemopoietic system [18].
  • Analysis of euthymic and athymic bone marrow radiation chimeras indicated that T cells located in the intestinal mucosa of unmanipulated IL-2(-/-), IL-2Ralpha(-/-), and IL-2Rbeta(-/-) mice are of thymic origin [6].
  • The results show that fully allogenic radiation chimeras can produce H-2-restricted T-cell responses to minor histocompatibility (H) antigens, and are discussed in relation to contrasting results recently obtained against viral antigens [19].
  • This study examines the turnover of these airway DC using a radiation chimera model that uses congenic rats expressing different allotypic variants of CD45, detectable via mAbs [20].

Analytical, diagnostic and therapeutic context of Radiation Chimera


  1. c-fos expression interferes with thymus development in transgenic mice. Rüther, U., Müller, W., Sumida, T., Tokuhisa, T., Rajewsky, K., Wagner, E.F. Cell (1988) [Pubmed]
  2. IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Senftleben, U., Li, Z.W., Baud, V., Karin, M. Immunity (2001) [Pubmed]
  3. Inducible nonlymphoid expression of Fas ligand is responsible for superantigen-induced peripheral deletion of T cells. Bonfoco, E., Stuart, P.M., Brunner, T., Lin, T., Griffith, T.S., Gao, Y., Nakajima, H., Henkart, P.A., Ferguson, T.A., Green, D.R. Immunity (1998) [Pubmed]
  4. Requirement for the NF-kappaB family member RelA in the development of secondary lymphoid organs. Alcamo, E., Hacohen, N., Schulte, L.C., Rennert, P.D., Hynes, R.O., Baltimore, D. J. Exp. Med. (2002) [Pubmed]
  5. Syk tyrosine kinase is required for the positive selection of immature B cells into the recirculating B cell pool. Turner, M., Gulbranson-Judge, A., Quinn, M.E., Walters, A.E., MacLennan, I.C., Tybulewicz, V.L. J. Exp. Med. (1997) [Pubmed]
  6. Intestinal inflammation observed in IL-2R/IL-2 mutant mice is associated with impaired intestinal T lymphopoiesis. Poussier, P., Ning, T., Chen, J., Banerjee, D., Julius, M. Gastroenterology (2000) [Pubmed]
  7. Adapter molecule Grb2-associated binder 1 is specifically expressed in marginal zone B cells and negatively regulates thymus-independent antigen-2 responses. Itoh, S., Itoh, M., Nishida, K., Yamasaki, S., Yoshida, Y., Narimatsu, M., Park, S.J., Hibi, M., Ishihara, K., Hirano, T. J. Immunol. (2002) [Pubmed]
  8. Selection of the T cell repertoire during ontogeny: limiting dilution analysis. Teh, H.S., Bennink, J., Von Boehmer, H. Eur. J. Immunol. (1982) [Pubmed]
  9. Clonal deletion of self-Mls-reactive thymocytes at the early stage in H-2-compatible but Mls-disparate radiation chimeras. Ogimoto, M., Yoshikai, Y., Matsuzaki, G., Ohga, S., Matsumoto, K., Nomoto, K. Immunology (1990) [Pubmed]
  10. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-kappa B in leukocyte recruitment. Alcamo, E., Mizgerd, J.P., Horwitz, B.H., Bronson, R., Beg, A.A., Scott, M., Doerschuk, C.M., Hynes, R.O., Baltimore, D. J. Immunol. (2001) [Pubmed]
  11. Immune dysfunction associated with graft-vs-host reaction in mice transplanted across minor histocompatibility barriers. II. Reversible defect in T-dependent antibody responses. Budhecha, S., Hamilton, B.L. J. Immunol. (1989) [Pubmed]
  12. Production and response to interleukin 2 in vitro and in vivo after bone marrow transplantation in mice. Merluzzi, V.J., Welte, K., Last-Barney, K., Mertelsmann, R., Souza, L., Boone, T., Savage, D.M., Quinn, D., O'Reilly, R.J. J. Immunol. (1985) [Pubmed]
  13. Human papillomavirus type 16 E7 oncoprotein expressed in peripheral epithelium tolerizes E7-directed cytotoxic T-lymphocyte precursors restricted through human (and mouse) major histocompatibility complex class I alleles. Doan, T., Herd, K., Street, M., Bryson, G., Fernando, G., Lambert, P., Tindle, R. J. Virol. (1999) [Pubmed]
  14. Sequential analysis of the virus-immune responder characteristics of thymocytes from F1 leads to parent radiation chimeras. Korngold, R., Doherty, P.C. Thymus (1982) [Pubmed]
  15. C4 synthesis in C4-deficient guinea pig radiation chimeras: restoration of the classic complement pathway. Webster, R.O., Rudofsky, U.H., Pickering, R.J. J. Immunol. (1976) [Pubmed]
  16. Prevention of syngeneic graft-versus-host disease by recovery of thymic microenvironment after cyclosporine. Beschorner, W.E., Ren, H., Phillips, J., Pulido, H.B., Hruban, R.H., Hess, A.D. Transplantation (1991) [Pubmed]
  17. Role of plasminogen activators and urokinase receptor in platelet kinetics. Piguet, P.F., Vesin, C., Da Laperousaz, C., Rochat, A. Hematol. J. (2000) [Pubmed]
  18. Natural, genetically determined resistance toward influenza virus in hemopoietic mouse chimeras. Role of mononuclear phagocytes. Haller, O., Arnheiter, H., Lindenmann, J. J. Exp. Med. (1979) [Pubmed]
  19. In a fully H-2 incompatible chimera, T cells of donor origin can respond to minor histocompatibility antigens in association with either donor or host H-2 type. Matzinger, P., Mirkwood, G. J. Exp. Med. (1978) [Pubmed]
  20. Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways. Holt, P.G., Haining, S., Nelson, D.J., Sedgwick, J.D. J. Immunol. (1994) [Pubmed]
  21. The murine forestomach: a sensitive site for graft-versus-host disease. Sale, G.E., Farr, A., Hamilton, B.L. Bone Marrow Transplant. (1991) [Pubmed]
WikiGenes - Universities