The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Clonal Deletion

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Clonal Deletion

 

High impact information on Clonal Deletion

  • If allogeneic marrow is given at high cell doses under the umbrella of CD4 and CD8 antibodies, then tolerance can be achieved through clonal deletion [6].
  • We show here that transmission of an infectious MMTV is prevented when superantigen-reactive cells are absent through either clonal deletion due to the expression of an endogenous MTV with identical superantigen specificity or exclusion due to expression of a transgenic TCR beta chain that does not interact with the viral superantigen [7].
  • CD4+ cells are positively selected in K14 mice, but clonal deletion does not ocur in K14 mice or in relB-negative mice, which lack a thymic medulla [8].
  • The effects of two PTK-specific inhibitors, herbimycin A and genistein, on the clonal deletion of immature thymocytes and the activation of mature thymocytes were examined [9].
  • Gene dosage--limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity [10].
 

Biological context of Clonal Deletion

 

Anatomical context of Clonal Deletion

 

Associations of Clonal Deletion with chemical compounds

  • In conclusion, these results show that (a) natural tolerance to C5 is an active process that is T cell dependent and requires the presence of antigen; (b) in this natural model, clonal abortion does not seem to occur; and (c) both tolerant and nontolerant B cells retain the capacity to produce autoantibody [20].
  • Sequential mechanisms of cyclophosphamide-induced skin allograft tolerance including the intrathymic clonal deletion followed by late breakdown of the clonal deletion [21].
  • Relationship of cyclosporine A-mediated inhibition of clonal deletion and development of syngeneic graft-versus-host disease [22].
  • Our results also confirm the previous findings that accessory molecules on thymocytes such as CD4 may be involved in thymic selection, and further suggest that an interaction of mousE CD4 and mouse A alpha chain is required for the clonal deletion [23].
  • Unlike control animals, RV-gp chimeric animals did not possess T cells specific for the gp Ag as measured by proliferation and cytotoxic function, and further analysis suggested that tolerance of the gp-specific self-reactive T cells occurred by clonal deletion [24].
 

Gene context of Clonal Deletion

 

Analytical, diagnostic and therapeutic context of Clonal Deletion

References

  1. Perinatal blockade of b7-1 and b7-2 inhibits clonal deletion of highly pathogenic autoreactive T cells. Gao, J.X., Zhang, H., Bai, X.F., Wen, J., Zheng, X., Liu, J., Zheng, P., Liu, Y. J. Exp. Med. (2002) [Pubmed]
  2. Acquired Mls-1a-like clonal deletion in Mls-1b mice. Papiernik, M., Pontoux, C., Gisselbrecht, S. J. Exp. Med. (1992) [Pubmed]
  3. Mechanisms of autoimmunity in the context of T-cell tolerance: insights from natural and transgenic animal model systems. Siegel, R.M., Katsumata, M., Komori, S., Wadsworth, S., Gill-Morse, L., Jerrold-Jones, S., Bhandoola, A., Greene, M.I., Yui, K. Immunol. Rev. (1990) [Pubmed]
  4. Identification of an endogenous mammary tumor virus involved in the clonal deletion of V beta 2 T cells. Jouvin-Marche, E., Marche, P.N., Six, A., Liebe-Gris, C., Voegtle, D., Cazenave, P.A. Eur. J. Immunol. (1993) [Pubmed]
  5. Maternal transfer of infectious mouse mammary tumor retroviruses does not depend on clonal deletion of superantigen-reactive V beta 14+ T cells. Penninger, J.M., Wallace, V.A., Timms, E., Mak, T.W. Eur. J. Immunol. (1994) [Pubmed]
  6. How do monoclonal antibodies induce tolerance? A role for infectious tolerance? Waldmann, H., Cobbold, S. Annu. Rev. Immunol. (1998) [Pubmed]
  7. Superantigen-induced immune stimulation amplifies mouse mammary tumor virus infection and allows virus transmission. Held, W., Waanders, G.A., Shakhov, A.N., Scarpellino, L., Acha-Orbea, H., MacDonald, H.R. Cell (1993) [Pubmed]
  8. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Laufer, T.M., DeKoning, J., Markowitz, J.S., Lo, D., Glimcher, L.H. Nature (1996) [Pubmed]
  9. No requirement for p56lck in the antigen-stimulated clonal deletion of thymocytes. Nakayama, K., Loh, D.Y. Science (1992) [Pubmed]
  10. Gene dosage--limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. Liston, A., Gray, D.H., Lesage, S., Fletcher, A.L., Wilson, J., Webster, K.E., Scott, H.S., Boyd, R.L., Peltonen, L., Goodnow, C.C. J. Exp. Med. (2004) [Pubmed]
  11. Distinct recognition phenotypes exist for T cell clones specific for small peptide regions of proteins. Implications for the mechanisms underlying major histocompatibility complex-restricted antigen recognition and clonal deletion models of immune response gene defects. Shastri, N., Oki, A., Miller, A., Sercarz, E.E. J. Exp. Med. (1985) [Pubmed]
  12. Functional clonal deletion in immunological tolerance to major histocompatibility complex antigens. Nossal, G.J., Pike, B.L. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  13. Defective TCR-mediated signaling in anergic T cells. Migita, K., Eguchi, K., Kawabe, Y., Tsukada, T., Ichinose, Y., Nagataki, S., Ochi, A. J. Immunol. (1995) [Pubmed]
  14. Role of intrathymic clonal deletion and peripheral anergy in transplantation tolerance induced by bone marrow transplantation in mice conditioned with a nonmyeloablative regimen. Tomita, Y., Khan, A., Sykes, M. J. Immunol. (1994) [Pubmed]
  15. Environmental chemical-induced pro/pre-B cell apoptosis: analysis of c-Myc, p27Kip1, and p21WAF1 reveals a death pathway distinct from clonal deletion. Ryu, H.Y., Mann, K.K., Schlezinger, J.J., Jensen, B., Sherr, D.H. J. Immunol. (2003) [Pubmed]
  16. Glucocorticoid-mediated control of the activation and clonal deletion of peripheral T cells in vivo. Gonzalo, J.A., González-García, A., Martínez, C., Kroemer, G. J. Exp. Med. (1993) [Pubmed]
  17. Defect in negative selection in lpr donor-derived T cells differentiating in non-lpr host thymus. Matsumoto, K., Yoshikai, Y., Asano, T., Himeno, K., Iwasaki, A., Nomoto, K. J. Exp. Med. (1991) [Pubmed]
  18. The bcl-2 gene product inhibits clonal deletion of self-reactive B lymphocytes in the periphery but not in the bone marrow. Nisitani, S., Tsubata, T., Murakami, M., Okamoto, M., Honjo, T. J. Exp. Med. (1993) [Pubmed]
  19. Down-modulation of c-myc expression induces apoptosis of B lymphocyte models of tolerance via clonal deletion. Sonenshein, G.E. J. Immunol. (1997) [Pubmed]
  20. A natural model of immunologic tolerance. Tolerance to murine C5 is mediated by T cells, and antigen is required to maintain unresponsiveness. Harris, D.E., Cairns, L., Rosen, F.S., Borel, Y. J. Exp. Med. (1982) [Pubmed]
  21. Sequential mechanisms of cyclophosphamide-induced skin allograft tolerance including the intrathymic clonal deletion followed by late breakdown of the clonal deletion. Eto, M., Mayumi, H., Tomita, Y., Yoshikai, Y., Nishimura, Y., Nomoto, K. J. Immunol. (1990) [Pubmed]
  22. Relationship of cyclosporine A-mediated inhibition of clonal deletion and development of syngeneic graft-versus-host disease. Bryson, J.S., Caywood, B.E., Kaplan, A.M. J. Immunol. (1991) [Pubmed]
  23. Thymic deletion of V beta 11+, V beta 5+ T cells in H-2E negative, HLA-DQ beta+ single transgenic mice. Zhou, P., Anderson, G.D., Savarirayan, S., Inoko, H., David, C.S. J. Immunol. (1991) [Pubmed]
  24. Prevention of autoimmune disease by retroviral-mediated gene therapy. Ally, B.A., Hawley, T.S., McKall-Faienza, K.J., Kündig, T.M., Oehen, S.U., Pircher, H., Hawley, R.G., Ohashi, P.S. J. Immunol. (1995) [Pubmed]
  25. The combination of anti-B7 monoclonal antibody and cyclosporin A induces alloantigen-specific anergy during a primary mixed lymphocyte reaction. Van Gool, S.W., de Boer, M., Ceuppens, J.L. J. Exp. Med. (1994) [Pubmed]
  26. Induction of interleukin 2 receptor beta chain expression by self-recognition in the thymus. Hanke, T., Mitnacht, R., Boyd, R., Hünig, T. J. Exp. Med. (1994) [Pubmed]
  27. Fetal expression of Fas ligand is necessary and sufficient for induction of CD8 T cell tolerance to the fetal antigen H-Y during pregnancy. Vacchio, M.S., Hodes, R.J. J. Immunol. (2005) [Pubmed]
  28. Regulation of thymocyte development through CD3. I. Timepoint of ligation of CD3 epsilon determines clonal deletion or induction of developmental program. Levelt, C.N., Ehrfeld, A., Eichmann, K. J. Exp. Med. (1993) [Pubmed]
  29. Prolonged survival of rat islet and skin xenografts in mice treated with donor splenocytes and anti-CD154 monoclonal antibody. Gordon, E.J., Markees, T.G., Phillips, N.E., Noelle, R.J., Shultz, L.D., Mordes, J.P., Rossini, A.A., Greiner, D.L. Diabetes (1998) [Pubmed]
  30. Immunologic mechanisms in tolerance produced in mice with nonradiation-based lymphoablation and donor-specific bone marrow. Hale, D.A., Gottschalk, R., Umemura, A., Maki, T., Monaco, A.P. Transplantation (2002) [Pubmed]
  31. Plasmapheresis and subsequent pulse cyclophosphamide versus pulse cyclophosphamide alone in severe lupus: design of the LPSG trial. Lupus Plasmapheresis Study Group (LPSG). Clark, W.F., Dau, P.C., Euler, H.H., Guillevin, L., Hasford, J., Heer, A.H., Jones, J.V., Kashgarian, M., Knatterud, G., Lockwood, C.M. Journal of clinical apheresis. (1991) [Pubmed]
  32. Apoptosis induction by acyclic retinoid: a molecular basis of 'clonal deletion' therapy for hepatocellular carcinoma. Okuno, M., Sano, T., Matsushima-Nishiwaki, R., Adachi, S., Akita, K., Okano, Y., Kojima, S., Moriwaki, H. Jpn. J. Clin. Oncol. (2001) [Pubmed]
 
WikiGenes - Universities