The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Tetralit     nitramide

Synonyms: Nitramine, Tetralite, Tetril, Tetryl, NSC-2166, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of nitramide

 

High impact information on nitramide

 

Chemical compound and disease context of nitramide

 

Biological context of nitramide

  • ESI produced a five-fold increase in detector response over atmospheric pressure chemical ionization (APCI) for the nitramine compounds, while the more energetic APCI produced more than twenty times the ESI response for nitroaromatics [10].
  • Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates [11].
  • TNB and tetryl were positive in TA98 (32.5, 5.2revertants/nmole) and TA100 (7.4, 9.5revertants/nmole) without metabolic activation and were more potent than TNT (TA98, 0.3revertants/nmole; TA100, 2.4revertants/nmole) [12].
  • In vitro enzyme and functional gene expression studies have implicated a limited number of enzymes/genes involved in cyclic nitramine catabolism [13].
  • A variety of process modifications (i.e. addition of fertilizer, microbial biomass, purging with nitrogen, etc.) that were performed during the course of the experiment did not increase the tetryl biodegradation rate beyond the rates of degradation without modifications [14].
 

Associations of nitramide with other chemical compounds

  • The biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in liquid cultures with municipal anaerobic sludge showed that at least two degradation routes were involved in the disappearance of the cyclic nitramine [15].
  • Rat liver DT-diaphorase (EC 1.6.99.2) catalyzed reductive N-denitration of tetryl (2,4,6-tri-nitrophenyl-N-methylnitramine) and 2,4-dinitrophenyl-N-methylnitramine, oxidizing the excess of NADPH [16].
  • Results show that oxidation efficiencies in Fenton system are in the following sequence: DNT > PA > AP > TNT > Tetryl > RDX > HMX [17].
  • Hexanitrohexaazaisowurtzitane (CL-20), a new polycyclic polynitramine, has the same functional nitramine groups (N-NO2) as the widely used energetic chemicals hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane (royal demolition explosive [RDX]) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (high-melting explosive [HMX]) [18].
  • Biodegradation mechanisms for cyclic nitramines include (a) formation of a nitramine free radical and loss of nitro functional groups, (b) reduction of nitro functional groups, (c) direct enzymatic cleavage, (d) alpha-hydroxylation, or (e) hydride ion transfer [13].
 

Gene context of nitramide

  • DT-diaphorase catalyzes N-denitration and redox cycling of tetryl [16].
  • Decomposition of the polycyclic nitramine explosive, CL-20, by Fe(0) [19].
  • Predictably, a successful enzymatic change on one of the N-NO2 or C-H bonds of the cyclic nitramine would lead to a ring cleavage because the inner C-N bonds in RDX become very weak (<2 kcal/mol) [20].
 

Analytical, diagnostic and therapeutic context of nitramide

References

  1. Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178. Fournier, D., Trott, S., Hawari, J., Spain, J. Appl. Environ. Microbiol. (2005) [Pubmed]
  2. Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Bhushan, B., Halasz, A., Thiboutot, S., Ampleman, G., Hawari, J. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  3. Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils. Robidoux, P.Y., Sunahara, G.I., Savard, K., Berthelot, Y., Dodard, S., Martel, M., Gong, P., Hawari, J. Environ. Toxicol. Chem. (2004) [Pubmed]
  4. Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6,-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Kitts, C.L., Green, C.E., Otley, R.A., Alvarez, M.A., Unkefer, P.J. Can. J. Microbiol. (2000) [Pubmed]
  5. Interactions of nitroaromatic compounds with the mammalian selenoprotein thioredoxin reductase and the relation to induction of apoptosis in human cancer cells. Cenas, N., Prast, S., Nivinskas, H., Sarlauskas, J., Arnér, E.S. J. Biol. Chem. (2006) [Pubmed]
  6. The mechanism of selective purine C-nitration revealed: NMR studies demonstrate formation and radical rearrangement of an N7-nitramine intermediate. Rodenko, B., Koch, M., van der Burg, A.M., Wanner, M.J., Koomen, G.J. J. Am. Chem. Soc. (2005) [Pubmed]
  7. Spin trapping of nitrogen dioxide radical from photolytic decomposition of nitramines. Pace, M.D., Kalyanaraman, B. Free Radic. Biol. Med. (1993) [Pubmed]
  8. Micellar electrokinetic chromatography and capillary electrochromatography of nitroaromatic explosives in seawater. Giordano, B.C., Copper, C.L., Collins, G.E. Electrophoresis (2006) [Pubmed]
  9. Allergic contact dermatitis from tetryl and trinitrotoluene. Goh, C.L. Contact Derm. (1984) [Pubmed]
  10. Sensitive determination of RDX, nitroso-RDX metabolites, and other munitions in ground water by solid-phase extraction and isotope dilution liquid chromatography-atmospheric pressure electro-spray [correction of chemical] ionization mass spectrometry. Cassada, D.A., Monson, S.J., Snow, D.D., Spalding, R.F. Journal of chromatography. A. (1999) [Pubmed]
  11. Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates. Balakrishnan, V.K., Halasz, A., Hawari, J. Environ. Sci. Technol. (2003) [Pubmed]
  12. Use of a Salmonella microsuspension bioassay to detect the mutagenicity of munitions compounds at low concentrations. George, S.E., Huggins-Clark, G., Brooks, L.R. Mutat. Res. (2001) [Pubmed]
  13. Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Crocker, F.H., Indest, K.J., Fredrickson, H.L. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  14. Bioslurry treatment for soils contaminated with very high concentrations of 2,4,6-trinitrophenylmethylnitramine (tetryl). Fuller, M.E., Kruczek, J., Schuster, R.L., Sheehan, P.L., Arienti, P.M. Journal of hazardous materials. (2003) [Pubmed]
  15. Characterization of metabolites during biodegradation of hexahydro-1, 3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Hawari, J., Halasz, A., Sheremata, T., Beaudet, S., Groom, C., Paquet, L., Rhofir, C., Ampleman, G., Thiboutot, S. Appl. Environ. Microbiol. (2000) [Pubmed]
  16. DT-diaphorase catalyzes N-denitration and redox cycling of tetryl. Anusevicius, Z., Sarlauskas, J., Nivinskas, H., Segura-Aguilar, J., Cenas, N. FEBS Lett. (1998) [Pubmed]
  17. Oxidation of explosives by Fenton and photo-Fenton processes. Liou, M.J., Lu, M.C., Chen, J.N. Water Res. (2003) [Pubmed]
  18. Survival and reproduction of enchytraeid worms, Oligochaeta, in different soil types amended with energetic cyclic nitramines. Dodard, S.G., Sunahara, G.I., Kuperman, R.G., Sarrazin, M., Gong, P., Ampleman, G., Thiboutot, S., Hawari, J. Environ. Toxicol. Chem. (2005) [Pubmed]
  19. Decomposition of the polycyclic nitramine explosive, CL-20, by Fe(0). Balakrishnan, V.K., Monteil-Rivera, F., Halasz, A., Corbeanu, A., Hawari, J. Environ. Sci. Technol. (2004) [Pubmed]
  20. Microbial degradation of explosives: biotransformation versus mineralization. Hawari, J., Beaudet, S., Halasz, A., Thiboutot, S., Ampleman, G. Appl. Microbiol. Biotechnol. (2000) [Pubmed]
  21. Analysis of nitramine and nitroaromatic explosives in pink water by capillary electrophoresis. Oehrle, S.A. Electrophoresis (1997) [Pubmed]
  22. Cyclodextrin-assisted capillary electrophoresis for determination of the cyclic nitramine explosives RDX, HMX and CL-20 comparison with high-performance liquid chromatography. Groom, C.A., Halasz, A., Paquet, L., D'Cruz, P., Hawari, J. Journal of chromatography. A. (2003) [Pubmed]
  23. Mutagenic activity of tetryl, a nitroaromatic explosive, in three microbial test systems. Whong, W.Z., Speciner, N.D., Edwards, G.S. Toxicol. Lett. (1980) [Pubmed]
  24. Confirmation of N-nitrosodimethylamine and N-nitrosopyrrolidine in foods by conversion to their nitramines with pentafluoroperoxybenzoic acid. Kimoto, W.I., Silbert, L.S., Fiddler, W. Journal - Association of Official Analytical Chemists. (1984) [Pubmed]
 
WikiGenes - Universities