The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Rhodococcus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rhodococcus

 

High impact information on Rhodococcus

 

Chemical compound and disease context of Rhodococcus

  • It was found that aspartic acid and serine residues corresponding to Asp191 and Ser195 of the Rhodococcus amidase are present within the active site sequences of aspartic proteinases, thus suggesting the evolutionary relationship between the two [11].
  • The 1.4-kb downstream region from a nitrilase gene (nitA) of an actinomycete Rhodococcus rhodochrous J1, which is industrially in use, was found to be required for the isovaleronitrile-dependent induction of nitrilase synthesis in experiments using a Rhodococcus-Escherichia coli shuttle vector pK4 in a Rhodococcus strain [12].
  • Based on structural, biochemical, and genetic data, the soluble diiron monooxygenases can be divided into four groups: the soluble methane monooxygenases, the Amo alkene monooxygenase of Rhodococcus corallinus B-276, the phenol hydroxylases, and the four-component alkene/aromatic monooxygenases [13].
  • A co-crystallized benzoate-like molecule is also found bound to the metal center forming a distinctive hydrogen bond network as observed previously also in 4-chlorocatechol 1,2-dioxygenase from Rhodococcus opacus 1CP [14].
  • Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6. Identification of a new family of extradiol dioxygenases [15].
 

Biological context of Rhodococcus

 

Anatomical context of Rhodococcus

  • Linear B-cell epitopes of the Rhodococcus equi virulence-associated protein (VapA) were mapped using a synthetic peptide bank in this study [21].
  • Hydrogen peroxide (H2O2) tolerance of Rhodococcus sp. strain APG1, previously isolated from the aquatic fern Azolla pinnata, was examined in relation to nitric oxide (NO) production by cells cultured on a variety of C sources [22].
  • This study using Rhodococcus I24 reports on the application of multiparameter flow cytometry for the measurement of cell physiological properties based on cytoplasmic membrane (CM) integrity and membrane depolarization as indicators of toxic effects of the substrate, indene [23].
  • Finally, the lack of inhibitory effects of EGTA, a classical inhibitor of constitutive mammalian NOSs, and the specific immunodetection of a 100 kD protein from Rhodococcus cytosol by an antibody raised against human inducible NOS, is in favor of the presence of a NOS similar to inducible mammalian NOSs in Rhodococcus sp 312 [24].
  • Phenol biodegradation by suspended and immobilized cells of Rhodococcus erythropolis UPV-1 was studied in discontinuous and continuous mode under optimum culture conditions [25].
 

Gene context of Rhodococcus

 

Analytical, diagnostic and therapeutic context of Rhodococcus

References

  1. Cloning, sequencing, and expression of Rhodococcus L-phenylalanine dehydrogenase. Sequence comparisons to amino-acid dehydrogenases. Brunhuber, N.M., Banerjee, A., Jacobs, W.R., Blanchard, J.S. J. Biol. Chem. (1994) [Pubmed]
  2. Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue. Kobayashi, M., Komeda, H., Yanaka, N., Nagasawa, T., Yamada, H. J. Biol. Chem. (1992) [Pubmed]
  3. Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Wältermann, M., Hinz, A., Robenek, H., Troyer, D., Reichelt, R., Malkus, U., Galla, H.J., Kalscheuer, R., Stöveken, T., von Landenberg, P., Steinbüchel, A. Mol. Microbiol. (2005) [Pubmed]
  4. Trehalose 6,6'-dimycolate (Cord factor) enhances neovascularization through vascular endothelial growth factor production by neutrophils and macrophages. Sakaguchi, I., Ikeda, N., Nakayama, M., Kato, Y., Yano, I., Kaneda, K. Infect. Immun. (2000) [Pubmed]
  5. Pathogenic Nocardia, Rhodococcus, and related organisms are highly susceptible to imidazole antifungals. Dabbs, E.R., Naidoo, S., Lephoto, C., Nikitina, N. Antimicrob. Agents Chemother. (2003) [Pubmed]
  6. Imipenem/teicoplanin for Rhodococcus equi pulmonary infection in AIDS patients. Chavanet, P., Bonnotte, B., Caillot, D., Portier, H. Lancet (1991) [Pubmed]
  7. Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site. Arand, M., Hallberg, B.M., Zou, J., Bergfors, T., Oesch, F., van der Werf, M.J., de Bont, J.A., Jones, T.A., Mowbray, S.L. EMBO J. (2003) [Pubmed]
  8. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Gray, K.A., Pogrebinsky, O.S., Mrachko, G.T., Xi, L., Monticello, D.J., Squires, C.H. Nat. Biotechnol. (1996) [Pubmed]
  9. Hyper-inducible expression system for streptomycetes. Herai, S., Hashimoto, Y., Higashibata, H., Maseda, H., Ikeda, H., Omura, S., Kobayashi, M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  10. Optimizing bioconversion pathways through systems analysis and metabolic engineering. Stafford, D.E., Yanagimachi, K.S., Lessard, P.A., Rijhwani, S.K., Sinskey, A.J., Stephanopoulos, G. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  11. Identification of active sites in amidase: evolutionary relationship between amide bond- and peptide bond-cleaving enzymes. Kobayashi, M., Fujiwara, Y., Goda, M., Komeda, H., Shimizu, S. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  12. Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Komeda, H., Hori, Y., Kobayashi, M., Shimizu, S. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  13. Evolution of the soluble diiron monooxygenases. Leahy, J.G., Batchelor, P.J., Morcomb, S.M. FEMS Microbiol. Rev. (2003) [Pubmed]
  14. Crystal structure of the hydroxyquinol 1,2-dioxygenase from Nocardioides simplex 3E, a key enzyme involved in polychlorinated aromatics biodegradation. Ferraroni, M., Seifert, J., Travkin, V.M., Thiel, M., Kaschabek, S., Scozzafava, A., Golovleva, L., Schlömann, M., Briganti, F. J. Biol. Chem. (2005) [Pubmed]
  15. Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6. Identification of a new family of extradiol dioxygenases. Asturias, J.A., Eltis, L.D., Prucha, M., Timmis, K.N. J. Biol. Chem. (1994) [Pubmed]
  16. A novel gene cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low molecular mass nitrile hydratase (L-NHase) induced by its reaction product. Komeda, H., Kobayashi, M., Shimizu, S. J. Biol. Chem. (1996) [Pubmed]
  17. Structure of the photoreactive iron center of the nitrile hydratase from Rhodococcus sp. N-771. Evidence of a novel post-translational modification in the cysteine ligand. Tsujimura, M., Dohmae, N., Odaka, M., Chijimatsu, M., Takio, K., Yohda, M., Hoshino, M., Nagashima, S., Endo, I. J. Biol. Chem. (1997) [Pubmed]
  18. Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. Kobayashi, M., Yanaka, N., Nagasawa, T., Yamada, H. Biochemistry (1992) [Pubmed]
  19. Isocitrate lyase activity is required for virulence of the intracellular pathogen Rhodococcus equi. Wall, D.M., Duffy, P.S., Dupont, C., Prescott, J.F., Meijer, W.G. Infect. Immun. (2005) [Pubmed]
  20. Phenylalanine dehydrogenase from Rhodococcus sp. M4: high-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanism. Vanhooke, J.L., Thoden, J.B., Brunhuber, N.M., Blanchard, J.S., Holden, H.M. Biochemistry (1999) [Pubmed]
  21. B-Cell epitope mapping of the VapA protein of Rhodococcus equi: implications for early detection of R. equi disease in foals. Vanniasinkam, T., Barton, M.D., Heuzenroeder, M.W. J. Clin. Microbiol. (2001) [Pubmed]
  22. Involvement of nitric oxide synthase in sucrose-enhanced hydrogen peroxide tolerance of Rhodococcus sp. strain APG1, a plant-colonizing bacterium. Cohen, M.F., Yamasaki, H. Nitric Oxide (2003) [Pubmed]
  23. Application of multi-parameter flow cytometry using fluorescent probes to study substrate toxicity in the indene bioconversion. Amanullah, A., Hewitt, C.J., Nienow, A.W., Lee, C., Chartrain, M., Buckland, B.C., Drew, S.W., Woodley, J.M. Biotechnol. Bioeng. (2002) [Pubmed]
  24. Detection of a nitric oxide synthase possibly involved in the regulation of the Rhodococcus sp R312 nitrile hydratase. Sari, M.A., Moali, C., Boucher, J.L., Jaouen, M., Mansuy, D. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  25. Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier. Prieto, M.B., Hidalgo, A., Rodríguez-Fernández, C., Serra, J.L., Llama, M.J. Appl. Microbiol. Biotechnol. (2002) [Pubmed]
  26. Structural analysis of the 6 kb cryptic plasmid pFAJ2600 from Rhodococcus erythropolis NI86/21 and construction of Escherichia coli-Rhodococcus shuttle vectors. De Mot, R., Nagy, I., De Schrijver, A., Pattanapipitpaisal, P., Schoofs, G., Vanderleyden, J. Microbiology (Reading, Engl.) (1997) [Pubmed]
  27. In vitro production of tumor necrosis factor-alpha, interleukin-6 and interleukin-8 from normal human peripheral blood mononuclear cells stimulated by Rhodococcus equi. Pece, S., Giuliani, G., Fumarola, D., Mastroianni, C.M., Lichtner, M., Vullo, V., Antonaci, S., Jirillo, E. Vet. Microbiol. (1997) [Pubmed]
  28. TNF receptor p55 is required for elimination of inflammatory cells following control of intracellular pathogens. Kanaly, S.T., Nashleanas, M., Hondowicz, B., Scott, P. J. Immunol. (1999) [Pubmed]
  29. Involvement of interferon-gamma and tumor necrosis factor-alpha in host defense against Rhodococcus equi. Nordmann, P., Ronco, E., Guenounou, M. J. Infect. Dis. (1993) [Pubmed]
  30. Cloning and expression of a gene from Streptomyces scabies encoding a putative pathogenicity factor. Bukhalid, R.A., Loria, R. J. Bacteriol. (1997) [Pubmed]
  31. Active site-directed inhibitors of Rhodococcus 20 S proteasome. Kinetics and mechanism. Mc Cormack, T., Baumeister, W., Grenier, L., Moomaw, C., Plamondon, L., Pramanik, B., Slaughter, C., Soucy, F., Stein, R., Zühl, F., Dick, L. J. Biol. Chem. (1997) [Pubmed]
  32. Sequence of a Rhodococcus gene encoding a protein with extensive homology to the mammalian propionyl-CoA carboxylase beta chain. Nagy, I., Schoofs, G., Vanderleyden, J., De Mot, R. Gene (1992) [Pubmed]
  33. Structure and increased thermostability of Rhodococcus sp. naphthalene 1,2-dioxygenase. Gakhar, L., Malik, Z.A., Allen, C.C., Lipscomb, D.A., Larkin, M.J., Ramaswamy, S. J. Bacteriol. (2005) [Pubmed]
  34. Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Yoshimoto, T., Nagai, F., Fujimoto, J., Watanabe, K., Mizukoshi, H., Makino, T., Kimura, K., Saino, H., Sawada, H., Omura, H. Appl. Environ. Microbiol. (2004) [Pubmed]
 
WikiGenes - Universities