The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Paranaric acid     (9E,11E,13E,15E)-octadeca- 9,11,13,15...

Synonyms: Parinaric acid, CHEBI:32410, LMFA01030171, AC1NR0X8, C18:4n-3,5,7,9, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of alpha-parinaric acid

 

High impact information on alpha-parinaric acid

 

Biological context of alpha-parinaric acid

  • Lipid clustering in bilayers detected by the fluorescence kinetics and anisotropy of trans-parinaric acid [9].
  • To determine if the membrane rigidification that occurs with regressed membrane samples under the same incubation conditions is caused by the hydrolysis products of phospholipase activity, fluorescence polarization experiments with the probe trans-parinaric acid were conducted [10].
  • Binding stoichiometries were different for fatty acids and their bulky fluorescent analogues. trans-Parinaric acid when bound to FABP showed a complex induced CD-spectrum, which is explained by a close proximity of two ligands in the same binding site [11].
 

Anatomical context of alpha-parinaric acid

 

Associations of alpha-parinaric acid with other chemical compounds

 

Gene context of alpha-parinaric acid

  • Since fluorescence anisotropy studies with trans-parinaric acid, an interior-sensitive probe with high affinity for gel-phase lipids, did not detect any changes in lipid packing or Tc, it is likely that SP-B resides primarily in fluid-phase domains [19].
  • An analysis is presented of the complex anisotropy behavior of trans-parinaric acid in single component DEPC lipid bilayers [20].
  • The polar probes HC, TPA and TMADPH reported the r value in a different order: HDL2, HDL3 greater than or equal to LDL much greater than VLDL [21].
  • Because of the structural similarity of octadecatetraenoic acid (18:4n-3; stearidonic acid) with 20:4n-6, the present study was undertaken to determine whether stearidonic acid also exerts an inhibitory effect on the 5-lipoxygenase pathway [22].
  • This is consistent with the preferential binding of cis-fatty acids to L-FABP but in contrast to the preferential binding of trans-parinaric acid to the L-cell plasma membrane fatty acid transporter (PMFABP) [23].
 

Analytical, diagnostic and therapeutic context of alpha-parinaric acid

  • The fatty acid composition and arachidonic acid concentrations were determined in total phospholipids after the addition of an internal standard, octadecatetraenoic acid (18:4n-3), and subsequent gas chromatography [24].
  • Peroxidation of phospholipids was assayed using a fluorescent technique based on metabolic integration of an oxidation-sensitive and fluorescent fatty acid, cis-parinaric acid (PnA), into cellular phospholipids and subsequent HPLC separation of cis-PnA-labeled phospholipids [25].

References

  1. Conjugated polyene fatty acids as fluorescent membrane probes: model system studies. Sklar, L.A., Hudson, B.S. J. Supramol. Struct. (1976) [Pubmed]
  2. The use of the fluorescent probe alpha-parinaric acid to determine the physical state of the intracytoplasmic membranes of the photosynthetic bacterium, Rhodopseudomonas sphaeroides. Fraley, R.T., Jameson, D.M., Kaplan, S. Biochim. Biophys. Acta (1978) [Pubmed]
  3. Fluorescence probes in metastatic B16 melanoma membranes. Schroeder, F. Biochim. Biophys. Acta (1984) [Pubmed]
  4. Intralysosomal accumulation of polyanions. II. Polyanion internalization and its influence on lysosomal pH and membrane fluidity. Kielian, M.C., Cohn, Z.A. J. Cell Biol. (1982) [Pubmed]
  5. Conjugated polyene fatty acids as membrane probes: preliminary characterization. Sklar, L.A., Hudson, B.S., Simoni, R.D. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  6. Peroxisome proliferator-activated receptor alpha interacts with high affinity and is conformationally responsive to endogenous ligands. Hostetler, H.A., Petrescu, A.D., Kier, A.B., Schroeder, F. J. Biol. Chem. (2005) [Pubmed]
  7. Correlation between lipid fluidity and tryptic susceptibility of Ca2+-ATPase in sarcoplasmic reticulum membranes. Blazyk, J., Wu, C.J., Wu, S.C. J. Biol. Chem. (1985) [Pubmed]
  8. Physical properties of membranes isolated from tissue culture cells with altered phospholipid composition. Schroeder, F., Holland, J.F., Vagelos, P.R. J. Biol. Chem. (1976) [Pubmed]
  9. Lipid clustering in bilayers detected by the fluorescence kinetics and anisotropy of trans-parinaric acid. Reyes Mateo, C., Brochon, J.C., Pilar Lillo, M., Ulises Acuña, A. Biophys. J. (1993) [Pubmed]
  10. Involvement of phospholipase A activity in the plasma membrane of the rat corpus luteum during luteolysis. Riley, J.C., Carlson, J.C. Endocrinology (1987) [Pubmed]
  11. Spectroscopic investigations on the binding site of bovine hepatic fatty acid binding protein. Evidence for the existence of a single binding site for two fatty acid molecules. Keuper, H.J., Klein, R.A., Spener, F. Chem. Phys. Lipids (1985) [Pubmed]
  12. Use of beta-parinaric acid, a novel fouorimetric probe, to determine characteristic temperatures of membranes and membrane lipids from cultured animal cells. Schroeder, F., Holland, J.F., Vagelos, P.R. J. Biol. Chem. (1976) [Pubmed]
  13. Cryopreservation in different concentrations of glycerol alters boar sperm and their membranes. Buhr, M.M., Fiser, P., Bailey, J.L., Curtis, E.F. J. Androl. (2001) [Pubmed]
  14. Gel phase phospholipid in the plasma membrane of sterol-depleted mouse LM cells. Analysis by fluorescence polarization and x-ray diffraction. Welti, R., Rintoul, D.A., Goodsaid-Zalduondo, F., Felder, S., Silbert, D.F. J. Biol. Chem. (1981) [Pubmed]
  15. Membrane anomalies in Huntington's disease fibroblasts. Schroeder, F., Goetz, I.E., Roberts, E. J. Neurochem. (1984) [Pubmed]
  16. Structural and biochemical characterization of toad liver fatty acid-binding protein. Di Pietro, S.M., Córsico, B., Perduca, M., Monaco, H.L., Santomé, J.A. Biochemistry (2003) [Pubmed]
  17. Conjugated polyene fatty acids as fluorescent probes: synthetic phospholipid membrane studies. Sklar, L.A., Hudson, B.S., Simoni, R.D. Biochemistry (1977) [Pubmed]
  18. Bilayer acyl chain dynamics and lipid-protein interaction: the effect of the M13 bacteriophage coat protein on the decay of the fluorescence anisotropy of parinaric acid. Wolber, P.K., Hudson, B.S. Biophys. J. (1982) [Pubmed]
  19. Surfactant protein SP-B induces ordering at the surface of model membrane bilayers. Baatz, J.E., Elledge, B., Whitsett, J.A. Biochemistry (1990) [Pubmed]
  20. Analysis of the anisotropy decay of trans-parinaric acid in lipid bilayers. Ruggiero, A., Hudson, B. Biophys. J. (1989) [Pubmed]
  21. Characterization of the core and surface of human plasma lipoproteins. A study based on the use of five fluorophores. Ben-Yashar, V., Barenholz, Y. Chem. Phys. Lipids (1991) [Pubmed]
  22. Stearidonic acid, an inhibitor of the 5-lipoxygenase pathway. A comparison with timnodonic and dihomogammalinolenic acid. Guichardant, M., Traitler, H., Spielmann, D., Sprecher, H., Finot, P.A. Lipids (1993) [Pubmed]
  23. Expression of rat L-FABP in mouse fibroblasts: role in fat absorption. Schroeder, F., Jefferson, J.R., Powell, D., Incerpi, S., Woodford, J.K., Colles, S.M., Myers-Payne, S., Emge, T., Hubbell, T., Moncecchi, D. Mol. Cell. Biochem. (1993) [Pubmed]
  24. Fatty acid composition and arachidonic acid concentrations in alveolar bone of rats fed diets with different lipids. Alam, S.Q., Kokkinos, P.P., Alam, B.S. Calcif. Tissue Int. (1993) [Pubmed]
  25. Depletion of Bcl-2 by an antisense oligonucleotide induces apoptosis accompanied by oxidation and externalization of phosphatidylserine in NCI-H226 lung carcinoma cells. Koty, P.P., Tyurina, Y.Y., Tyurin, V.A., Li, S.X., Kagan, V.E. Mol. Cell. Biochem. (2002) [Pubmed]
 
WikiGenes - Universities