The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEBI:32409     (9Z,11E,13E,15Z)-octadeca- 9,11,13,15...

Synonyms: AC1NUU11, LMFA01030764, C18:4n-3,5,7,9, 593-38-4, UNII-KM4KXM284R, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of cis-parinaric acid

 

High impact information on cis-parinaric acid

 

Chemical compound and disease context of cis-parinaric acid

  • Similar results were obtained after the exposure of C6 rat glioma cultures, A172 human glioma cultures, and U-937 human monocytic leukemia cultures to cis-parinaric acid [3].
 

Biological context of cis-parinaric acid

 

Anatomical context of cis-parinaric acid

 

Associations of cis-parinaric acid with other chemical compounds

 

Gene context of cis-parinaric acid

  • The induction of L-FABP was accompanied by a marked increase in the binding capacity of peroxisomal matrix proteins for oleic acid and cis-parinaric acid [25].
  • This observation of SCP-2 specifically binding the fluorescent NBD-stearic acid was confirmed with RdB-stearic acid and the naturally fluorescent cis-parinaric acid, both of which had similar affinities and stoichiometries [26].
  • Induction of high I-FABP-expressing cells (H141) decreased the initial rate and extent of uptake of cis-parinaric acid, a nonmetabolizable fatty acid, and of [3H]oleic acid, an esterifiable fatty acid [27].
  • Brain B-FABP bound NBD-stearic and cis-parinaric acid with K D values near 0.01 and 0.7 microM, respectively [28].
  • Anisotropy measurements of interior-selective fluorescent probes (cis-parinaric acid and DPH) imply that addition of SP-B into the phospholipid shifted the Tc of the model membrane but did not alter lipid order at the membrane interior [29].
 

Analytical, diagnostic and therapeutic context of cis-parinaric acid

References

  1. Modulation of ligand binding affinity of the adipocyte lipid-binding protein by selective mutation. Analysis in vitro and in situ. Sha, R.S., Kane, C.D., Xu, Z., Banaszak, L.J., Bernlohr, D.A. J. Biol. Chem. (1993) [Pubmed]
  2. Antioxidant protection of propofol and its recycling in erythrocyte membranes. Tsuchiya, M., Asada, A., Kasahara, E., Sato, E.F., Shindo, M., Inoue, M. Am. J. Respir. Crit. Care Med. (2002) [Pubmed]
  3. Cytotoxicity of cis-parinaric acid in cultured malignant gliomas. Traynelis, V.C., Ryken, T.C., Cornelius, A.S. Neurosurgery (1995) [Pubmed]
  4. Increased susceptibility to membrane lipid peroxidation in renal failure. Anderton, J.G., Thomas, T.H., Wilkinson, R. Nephron (1996) [Pubmed]
  5. Estrogen and tamoxifen metabolites protect smooth muscle cell membrane phospholipids against peroxidation and inhibit cell growth. Dubey, R.K., Tyurina, Y.Y., Tyurin, V.A., Gillespie, D.G., Branch, R.A., Jackson, E.K., Kagan, V.E. Circ. Res. (1999) [Pubmed]
  6. The presence of molecular markers of in vivo lipid peroxidation in osteoarthritic cartilage: a pathogenic role in osteoarthritis. Shah, R., Raska, K., Tiku, M.L. Arthritis Rheum. (2005) [Pubmed]
  7. The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. Cowart, L.A., Wei, S., Hsu, M.H., Johnson, E.F., Krishna, M.U., Falck, J.R., Capdevila, J.H. J. Biol. Chem. (2002) [Pubmed]
  8. Parinaric acids as probes of binding domains in neutrophil elastase. Tyagi, S.C., Simon, S.R. J. Biol. Chem. (1991) [Pubmed]
  9. Liver fatty acid-binding protein colocalizes with peroxisome proliferator activated receptor alpha and enhances ligand distribution to nuclei of living cells. Huang, H., Starodub, O., McIntosh, A., Atshaves, B.P., Woldegiorgis, G., Kier, A.B., Schroeder, F. Biochemistry (2004) [Pubmed]
  10. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. Tiku, M.L., Shah, R., Allison, G.T. J. Biol. Chem. (2000) [Pubmed]
  11. Alternative ligands as probes for the carotenoid-binding site of lobster carapace crustacyanin. Clarke, J.B., Eliopoulos, E.E., Findlay, J.B., Zagalsky, P.F. Biochem. J. (1990) [Pubmed]
  12. Probing the influence of cis-trans isomers on model lipid membrane fluidity using cis-parinaric acid and a stop-flow technique. Ferreri, C., Pierotti, S., Chatgilialoglu, C., Barbieri, A., Barigelletti, F. Chem. Commun. (Camb.) (2006) [Pubmed]
  13. Reactivity of dietary phenolic acids with peroxyl radicals: antioxidant activity upon low density lipoprotein peroxidation. Laranjinha, J.A., Almeida, L.M., Madeira, V.M. Biochem. Pharmacol. (1994) [Pubmed]
  14. tert-butyl hydroperoxide/hemoglobin-induced oxidative stress and damage to vascular smooth muscle cells: different effects of nitric oxide and nitrosothiols. Shvedova, A.A., Tyurina, Y.Y., Gorbunov, N.V., Tyurin, V.A., Castranova, V., Kommineni, C., Ojimba, J., Gandley, R., McLaughlin, M.K., Kagan, V.E. Biochem. Pharmacol. (1999) [Pubmed]
  15. Smoking disturbs mitochondrial respiratory chain function and enhances lipid peroxidation on human circulating lymphocytes. Miró, O., Alonso, J.R., Jarreta, D., Casademont, J., Urbano-Márquez, A., Cardellach, F. Carcinogenesis (1999) [Pubmed]
  16. Partition of parinaroyl phospholipids in mixed head group systems. Welti, R. Biochemistry (1982) [Pubmed]
  17. Redox cycling of phenol induces oxidative stress in human epidermal keratinocytes. Shvedova, A.A., Kommineni, C., Jeffries, B.A., Castranova, V., Tyurina, Y.Y., Tyurin, V.A., Serbinova, E.A., Fabisiak, J.P., Kagan, V.E. J. Invest. Dermatol. (2000) [Pubmed]
  18. Ebselen inhibition of apoptosis by reduction of peroxides. Ramakrishnan, N., Kalinich, J.F., McClain, D.E. Biochem. Pharmacol. (1996) [Pubmed]
  19. Potentiation of murine astrocyte antioxidant defence by bcl-2: protection in part reflects elevated glutathione levels. Papadopoulos, M.C., Koumenis, I.L., Xu, L., Giffard, R.G. Eur. J. Neurosci. (1998) [Pubmed]
  20. Autoxidation of ubiquinol-6 is independent of superoxide dismutase. Schultz, J.R., Ellerby, L.M., Gralla, E.B., Valentine, J.S., Clarke, C.F. Biochemistry (1996) [Pubmed]
  21. Amphotericin B protects cis-parinaric acid against peroxyl radical-induced oxidation: amphotericin B as an antioxidant. Osaka, K., Ritov, V.B., Bernardo, J.F., Branch, R.A., Kagan, V.E. Antimicrob. Agents Chemother. (1997) [Pubmed]
  22. Direct binding of ethanol to bovine serum albumin: a fluorescent and 13C NMR multiplet relaxation study. Avdulov, N.A., Chochina, S.V., Daragan, V.A., Schroeder, F., Mayo, K.H., Wood, W.G. Biochemistry (1996) [Pubmed]
  23. Tamoxifen and hydroxytamoxifen as intramembraneous inhibitors of lipid peroxidation. Evidence for peroxyl radical scavenging activity. Custódio, J.B., Dinis, T.C., Almeida, L.M., Madeira, V.M. Biochem. Pharmacol. (1994) [Pubmed]
  24. Protection of low density lipoprotein oxidation at chemical and cellular level by the antioxidant drug dipyridamole. Iuliano, L., Colavita, A.R., Camastra, C., Bello, V., Quintarelli, C., Alessandroni, M., Piovella, F., Violi, F. Br. J. Pharmacol. (1996) [Pubmed]
  25. Localization of a portion of the liver isoform of fatty-acid-binding protein (L-FABP) to peroxisomes. Antonenkov, V.D., Sormunen, R.T., Ohlmeier, S., Amery, L., Fransen, M., Mannaerts, G.P., Hiltunen, J.K. Biochem. J. (2006) [Pubmed]
  26. Probing the ligand binding sites of fatty acid and sterol carrier proteins: effects of ethanol. Schroeder, F., Myers-Payne, S.C., Billheimer, J.T., Wood, W.G. Biochemistry (1995) [Pubmed]
  27. Metallothionein-IIA promoter induction alters rat intestinal fatty acid binding protein expression, fatty acid uptake, and lipid metabolism in transfected L-cells. Prows, D.R., Schroeder, F. Arch. Biochem. Biophys. (1997) [Pubmed]
  28. Isolation and characterization of two fatty acid binding proteins from mouse brain. Myers-Payne, S.C., Hubbell, T., Pu, L., Schnütgen, F., Börchers, T., Wood, W.G., Spener, F., Schroeder, F. J. Neurochem. (1996) [Pubmed]
  29. Surfactant protein SP-B induces ordering at the surface of model membrane bilayers. Baatz, J.E., Elledge, B., Whitsett, J.A. Biochemistry (1990) [Pubmed]
  30. Interactions between sarcoplasmic reticulum calcium adenosintriphosphatase and nonionic detergents. Dean, W.L., Suárez, C.P. Biochemistry (1981) [Pubmed]
  31. Induced chirality upon binding of cis-parinaric acid to bovine beta-lactoglobulin: spectroscopic characterization of the complex. Zsila, F., Imre, T., Szabó, P.T., Bikádi, Z., Simonyi, M. FEBS Lett. (2002) [Pubmed]
  32. Hydroxynimesulide, the main metabolite of nimesulide, prevents hydroperoxide/hemoglobin-induced hemolysis of rat erythrocytes. Maffei Facino, R., Carini, M., Aldini, G., Calloni, M.T. Drugs under experimental and clinical research. (1997) [Pubmed]
  33. Overexpression of metallothionein decreases sensitivity of pulmonary endothelial cells to oxidant injury. Pitt, B.R., Schwarz, M., Woo, E.S., Yee, E., Wasserloos, K., Tran, S., Weng, W., Mannix, R.J., Watkins, S.A., Tyurina, Y.Y., Tyurin, V.A., Kagan, V.E., Lazo, J.S. Am. J. Physiol. (1997) [Pubmed]
  34. The use of cis-parinaric acid to measure lipid peroxidation in cardiomyocytes during ischemia and reperfusion. Steenbergen, R.H., Drummen, G.P., Op den Kamp, J.A., Post, J.A. Biochim. Biophys. Acta (1997) [Pubmed]
 
WikiGenes - Universities