The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

diPalmitoylphosphatidylcholine     2-[[(2R)-2,3- dihexadecanoyloxypropoxy]...

Synonyms: DPPC, L-DPPC, L-a-DPPC, L-alpha-DPPC, CHEMBL1200737, ...
This record was replaced with 160339.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of LMGP01010564

  • The ability of TNBS to decrease mucosal hydrophobicity and induce colitis was attenuated if the hapten was coupled with dipalmitoylphosphatidylcholine [1].
  • Exponentially growing human melanoma cells (M14 cell line) were pretreated with various amounts of dipalmitoylphosphatidylcholine-containing multilamellar liposomes and then exposed to heat treatment (42.5 degrees C) [2].
  • The simultaneous administration of dipalmitoylphosphatidylcholine liposomes and methyl-bis(beta-chloroethyl)amine (HN2) to Ehrlich ascites tumor-bearing mice results in prolongation of survival, reduction of toxicity, and increase in chemotherapeutic index when compared to HN2 alone [3].
  • Pseudomonas aeruginosa (PA103) decreased DPPC synthesis, in part, via calpain-mediated degradation of CCTalpha [4].
  • The studies suggest that augmentation of DPPC synthesis via gene delivery of CCTalpha can attenuate impaired lung function in surfactant-deficient states such as bacterial sepsis [4].
 

Psychiatry related information on LMGP01010564

  • At lower concentrations, the length of the latency period is inversely proportional to the DPPC concentration [5].
 

High impact information on LMGP01010564

 

Chemical compound and disease context of LMGP01010564

 

Biological context of LMGP01010564

  • In this article we report a detailed quantitative analysis of the early time course of the hydrolysis of dipalmitoylphosphatidylcholine large unilamellar vesicles at 38 degrees C. Several kinetic models to quantitatively describe the data were considered [16].
  • These results are consistent with the hypothesis that the monomeric phospholipase A2 from A. piscivorus piscivorus initially possesses a low level of intrinsic activity toward large unilamellar DPPC vesicles and that the enzyme slowly becomes further activated on the vesicle surface via dimerization [5].
  • Proton permeability of dipalmitoylphosphatidylcholine liposomes was only fourfold higher at 48 degrees than at 24 degrees C, indicating a weak dependence on membrane fluidity, and this increase was abolished by Pr3+ [17].
  • The in vivo function of surfactants containing DPPC or the phospholipase-resistant analogs dihexadecylphosphatidylcholine (DEPC) or dihexadecylphosphonotidylcholine (DEPnC), with or without surfactant proteins B and C (SP-B+C), was thus evaluated in preterm rabbits (27 days' gestation) [18].
  • Ad5-CCT(Penta) gene transfer produced high-level CCTalpha gene expression, increased alveolar surfactant (DPPC) levels and improved lung surface tension and pressure-volume relationships relative to control mice [4].
 

Anatomical context of LMGP01010564

 

Associations of LMGP01010564 with other chemical compounds

 

Gene context of LMGP01010564

  • To elucidate further the conformation of human apolipoprotein A-I (apoA-I) in lipid-bound states and its effect on the reaction with lecithin cholesterol acyltransferase (LCAT), we prepared reconstituted HDL (rHDL) particles from a reaction mixture containing dipalmitoylphosphatidylcholine/cholesterol/apoA-I in the molar ratios of 150:7.5:1 [29].
  • SP-Br was more effective than native SP-B in promoting interfacial adsorption of phospholipid bilayers into interfacial films, presumably because of its higher structural flexibility, and retained the ability of native SP-B to stabilize DPPC interfacial films compressed to pressures near collapse against spontaneous relaxation [30].
  • These results confirm an important role for Prdx6 in lung surfactant DPPC degradation and synthesis by the reacylation pathway [31].
  • Surfactant phospholipid levels were increased 1.6-fold in injured SP-A (-/-) animals, although injury did not alter [3H]choline or [14C]palmitate incorporation into dipalmitoylphosphatidylcholine (DPPC), suggesting no change in surfactant synthesis/secretion 12 h after injury [32].
  • However neither VIP nor forskolin-induced PK activities were affected with dipalmitoylphosphatidylcholine (DPPC) liposomes [33].
 

Analytical, diagnostic and therapeutic context of LMGP01010564

References

  1. Molecular association of trinitrobenzenesulfonic acid and surface phospholipids in the development of colitis in rats. Tatsumi, Y., Lichtenberger, L.M. Gastroenterology (1996) [Pubmed]
  2. Enhancement of hyperthermic damage on M14 melanoma cells by liposome pretreatment. Laudonio, N., Marcocci, L., Arancia, G., Calcabrini, A., Del Bufalo, D., Greco, C., Zupi, G., Mavelli, I., Pedersen, J.Z., Bozzi, A. Cancer Res. (1990) [Pubmed]
  3. Differential enhancement of antitumor effectiveness by phospholipid vesicles (liposomes). Ritter, C., Iyengar, C.L., Rutman, R.J. Cancer Res. (1981) [Pubmed]
  4. Adenoviral gene transfer of a mutant surfactant enzyme ameliorates pseudomonas-induced lung injury. Zhou, J., Wu, Y., Henderson, F., McCoy, D.M., Salome, R.G., McGowan, S.E., Mallampalli, R.K. Gene Ther. (2006) [Pubmed]
  5. The temporal sequence of events in the activation of phospholipase A2 by lipid vesicles. Studies with the monomeric enzyme from Agkistrodon piscivorus piscivorus. Bell, J.D., Biltonen, R.L. J. Biol. Chem. (1989) [Pubmed]
  6. Fusion of dipalmitoylphosphatidylcholine vesicle membranes induced by concanavalin A. van der Bosch, J., McConnell, M. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  7. Model of biologically active apolipoprotein E bound to dipalmitoylphosphatidylcholine. Peters-Libeu, C.A., Newhouse, Y., Hatters, D.M., Weisgraber, K.H. J. Biol. Chem. (2006) [Pubmed]
  8. The conformation, location, and dynamic properties of the endocannabinoid ligand anandamide in a membrane bilayer. Tian, X., Guo, J., Yao, F., Yang, D.P., Makriyannis, A. J. Biol. Chem. (2005) [Pubmed]
  9. pH-triggered microparticles for peptide vaccination. Haining, W.N., Anderson, D.G., Little, S.R., von Bergwelt-Baildon, M.S., Cardoso, A.A., Alves, P., Kosmatopoulos, K., Nadler, L.M., Langer, R., Kohane, D.S., von Berwelt-Baildon, M.S. J. Immunol. (2004) [Pubmed]
  10. Transbilayer movement of dipalmitoylphosphatidylcholine in proteoliposomes reconstituted from detergent extracts of endoplasmic reticulum. Kinetics of transbilayer transport mediated by a single flippase and identification of protein fractions enriched in flippase activity. Gummadi, S.N., Menon, A.K. J. Biol. Chem. (2002) [Pubmed]
  11. Thermotropic behavior of dipalmitoylphosphatidylcholine vesicles reconstituted with the glycoprotein of vesicular stomatitis virus. Petri, W.A., Estep, T.N., Pal, R., Thompson, T.E., Biltonen, R.L., Wagner, R.R. Biochemistry (1980) [Pubmed]
  12. Amiodarone inhibits lung degradation of SP-A and perturbs the distribution of lysosomal enzymes. Baritussio, A., Marzini, S., Agostini, M., Alberti, A., Cimenti, C., Bruttomesso, D., Manzato, E., Quaglino, D., Pettenazzo, A. Am. J. Physiol. Lung Cell Mol. Physiol. (2001) [Pubmed]
  13. In-vitro bactericidal efficacy of sub-MIC concentrations of liposome-encapsulated antibiotic against gram-negative and gram-positive bacteria. Beaulac, C., Sachetelli, S., Lagace, J. J. Antimicrob. Chemother. (1998) [Pubmed]
  14. Application of protein-coupled liposomes to effective affinity screening from phage library. Kumada, Y., Nogami, M., Minami, N., Maehara, M., Katoh, S. Journal of chromatography. A. (2005) [Pubmed]
  15. A new monoclonal antibody directed to sialyl alpha 2-3lactoneotetraosylceramide and its application for detection of human gastrointestinal neoplasms. Suzuki, Y., Nishi, H., Hidari, K., Hirabayashi, Y., Matsumoto, M., Kobayashi, T., Watarai, S., Yasuda, T., Nakayama, J., Maeda, H. J. Biochem. (1991) [Pubmed]
  16. The activation of porcine pancreatic phospholipase A2 by dipalmitoylphosphatidylcholine large unilamellar vesicles. Analysis of the state of aggregation of the activated enzyme. Romero, G., Thompson, K., Biltonen, R.L. J. Biol. Chem. (1987) [Pubmed]
  17. Role of leaflet asymmetry in the permeability of model biological membranes to protons, solutes, and gases. Hill, W.G., Rivers, R.L., Zeidel, M.L. J. Gen. Physiol. (1999) [Pubmed]
  18. In vivo function of surfactants containing phosphatidylcholine analogs. Dizon-Co, L., Ikegami, M., Ueda, T., Jobe, A.H., Lin, W.H., Turcotte, J.G., Notter, R.H., Rider, E.D. Am. J. Respir. Crit. Care Med. (1994) [Pubmed]
  19. Liposomes as model membrane systems for immune attack. I. Transfer of antigenic determinants to lymphocyte membranes after interactions with hapten-bearing liposomes. Ozato, K., Ziegler, H.K., Henney, C.S. J. Immunol. (1978) [Pubmed]
  20. Characterization of rabbit lung lysosomes and their role in surfactant dipalmitoylphosphatidylcholine catabolism. Rider, E.D., Pinkerton, K.E., Jobe, A.H. J. Biol. Chem. (1991) [Pubmed]
  21. Calcium and magnesium dependence of phospholipase A2-catalyzed hydrolysis of phosphatidylcholine small unilamellar vesicles. Lathrop, B.K., Biltonen, R.L. J. Biol. Chem. (1992) [Pubmed]
  22. Promotion of survival and neurite outgrowth of cultured peripheral neurons by exogenous lipids and detergents. Unsicker, K., Wiegandt, H. Exp. Cell Res. (1988) [Pubmed]
  23. A common pathway for the uptake of surfactant lipids by alveolar cells. Poelma, D.L., Ju, M.R., Bakker, S.C., Zimmermann, L.J., Lachmann, B.F., van Iwaarden, J.F. Am. J. Respir. Cell Mol. Biol. (2004) [Pubmed]
  24. Characteristics of self-quenching of the fluorescence of lipid-conjugated rhodamine in membranes. MacDonald, R.I. J. Biol. Chem. (1990) [Pubmed]
  25. Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. Matz, C.E., Jonas, A. J. Biol. Chem. (1982) [Pubmed]
  26. Solubilization, purification, and characterization of a membrane-bound phospholipase A2 from the P388D1 macrophage-like cell line. Ulevitch, R.J., Watanabe, Y., Sano, M., Lister, M.D., Deems, R.A., Dennis, E.A. J. Biol. Chem. (1988) [Pubmed]
  27. Analysis of chimeric proteins identifies the regions in the carbohydrate recognition domains of rat lung collectins that are essential for interactions with phospholipids, glycolipids, and alveolar type II cells. Sano, H., Kuroki, Y., Honma, T., Ogasawara, Y., Sohma, H., Voelker, D.R., Akino, T. J. Biol. Chem. (1998) [Pubmed]
  28. Intraduodenal conjugated bile salts exert negative feedback control on gall bladder emptying in the fasting state without affecting cholecystokinin release or antroduodenal motility. van Ooteghem, N.A., Moschetta, A., Rehfeld, J.F., Samsom, M., van Erpecum, K.J., van Berge-Henegouwen, G.P. Gut (2002) [Pubmed]
  29. Structure of apolipoprotein A-I in three homogeneous, reconstituted high density lipoprotein particles. Wald, J.H., Krul, E.S., Jonas, A. J. Biol. Chem. (1990) [Pubmed]
  30. Intrinsic structural and functional determinants within the amino acid sequence of mature pulmonary surfactant protein SP-B. Serrano, A.G., Cruz, A., Rodríguez-Capote, K., Possmayer, F., Pérez-Gil, J. Biochemistry (2005) [Pubmed]
  31. Altered lung phospholipid metabolism in mice with targeted deletion of lysosomal-type phospholipase A2. Fisher, A.B., Dodia, C., Feinstein, S.I., Ho, Y.S. J. Lipid Res. (2005) [Pubmed]
  32. Surfactant protein A regulates surfactant phospholipid clearance after LPS-induced injury in vivo. Quintero, O.A., Korfhagen, T.R., Wright, J.R. Am. J. Physiol. Lung Cell Mol. Physiol. (2002) [Pubmed]
  33. Modification of HT 29 cell response to the vasoactive intestinal peptide (VIP) by membrane fluidization. el Battari, A., Ah-Kye, E., Muller, J.M., Sari, H., Marvaldi, J. Biochimie (1985) [Pubmed]
  34. Nature of the gel to liquid crystal transition of synthetic phosphatidylcholines. Albon, N., Sturtevant, J.M. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  35. Effect of dipalmitoylphosphatidylcholine vesicle curvature on the reaction with human apolipoprotein A-I. Wetterau, J.R., Jonas, A. J. Biol. Chem. (1982) [Pubmed]
  36. Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy. Leonenko, Z.V., Finot, E., Ma, H., Dahms, T.E., Cramb, D.T. Biophys. J. (2004) [Pubmed]
  37. Changes in lipid structure produced by surfactant proteins SP-A, SP-B, and SP-C. Williams, M.C., Hawgood, S., Hamilton, R.L. Am. J. Respir. Cell Mol. Biol. (1991) [Pubmed]
  38. Study of the effect of melittin on the thermotropism of dipalmitoylphosphatidylcholine by Raman spectroscopy. Lafleur, M., Dasseux, J.L., Pigeon, M., Dufourcq, J., Pézolet, M. Biochemistry (1987) [Pubmed]
 
WikiGenes - Universities