The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Mocimycin     (2S)-N-[(2E,4E,6S,7R)-7- [(2S,3S,4R,5R)-3,4...

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Delvomycin


High impact information on Delvomycin

  • In addition, the ability of wild-type tufB to complement kirromycin resistance was determined with deletion plasmids [6].
  • In the presence of kirromycin, the activated conformation of EF-Tu appears to be frozen [7].
  • The steps following GTP hydrolysis--the switch of EF-Tu to the GDP-bound conformation, the release of aminoacyl-tRNA from EF-Tu to the A site, and the dissociation of EF-Tu-GDP from the ribosome--which are altogether suppressed by kirromycin, are not distinguished kinetically [7].
  • Evidence is presented that kirromycin binds to this interface of wild-type EF-Tu.GTP, thereby jamming the conformational switch of EF-Tu upon GTP hydrolysis [8].
  • As with the latter, poly(Phe) synthesis by EF-TuGly20 is inhibited by the antibiotic kirromycin, but differs remarkably in that it is largely independent of the presence of EF-Ts [9].

Chemical compound and disease context of Delvomycin


Biological context of Delvomycin

  • These data strongly suggest that kirromycin induces in EF-Tu.GDP an additional tRNA binding site that can bind uncharged tRNA, aminoacyl-tRNA, and N- acetylaminoacyl -tRNA [15].
  • The fact that X5108 bound to EF-Tu is not in rapid equilibrium with X5108 free in solution needs to be considered in studies on the effect of X5108 and kirromycin on partial reactions of protein biosynthesis [16].
  • Post-translational phosphorylation of EF-Tu had been shown to prevent its binding to amino-acylated transfer RNA as well as to kirromycin, an antibiotic known to inhibit EF-Tu function [17].
  • They were selected by their kirromycin resistant phenotypes and all substitutions are in domain I at the interface between domains I and III of the EF-Tu.GTP configuration [18].
  • We have isolated and sequenced a collection of kirromycin resistant tuf mutations and identified thirteen single amino acid substitutions at seven different sites in EF-Tu [19].

Anatomical context of Delvomycin


Associations of Delvomycin with other chemical compounds


Gene context of Delvomycin

  • These plasmids continued to express tufA, as judged by the ability to complement mocimycin resistance and by electrophoretic analysis of synthesized proteins [25].
  • The deletion of the three tRNA genes does not significantly alter the in vivo expression of tufB as assessed by the kirromycin-sensitive phenotype of the transformant cells and by the synthesis of EF-Tu in mini-cells [26].
  • Characterization of ftsZ gene and its protein product from Streptomyces collinus producing kirromycin [27].
  • Although entry of the charged transfer messenger RNA (tmRNA) into the ribosome proceeded in the absence of elongation factor (EF-Tu) and in the presence of EF-Tu and the antibiotic kirromycin, evidence was found for the involvement of EF-Tu in trans-translation initiation [28].
  • The resulting EF-TuBo kirromycin and EF-TuAr EF-Ts complexes are separated by chromatography on diethylaminoethyl-Sephadex A-50 [29].

Analytical, diagnostic and therapeutic context of Delvomycin

  • Isolation, crystallization and X-ray analysis of the quaternary complex of Phe-tRNA(Phe), EF-Tu, a GTP analog and kirromycin [30].
  • Western blot analysis showed that Sr.EF-Tu1 was present at all times under kirromycin production conditions in submerged and surface-grown cultures of S. ramocissimus and in germinating spores [31].


  1. Visualization of elongation factor Tu on the Escherichia coli ribosome. Stark, H., Rodnina, M.V., Rinke-Appel, J., Brimacombe, R., Wintermeyer, W., van Heel, M. Nature (1997) [Pubmed]
  2. Mg2+ is not catalytically required in the intrinsic and kirromycin-stimulated GTPase action of Thermus thermophilus EF-Tu. Rutthard, H., Banerjee, A., Makinen, M.W. J. Biol. Chem. (2001) [Pubmed]
  3. Comparison of the Tu elongation factors from Staphylococcus aureus and Escherichia coli: possible basis for elfamycin insensitivity. Hall, C.C., Watkins, J.D., Georgopapadakou, N.H. Antimicrob. Agents Chemother. (1991) [Pubmed]
  4. The unique tuf2 gene from the kirromycin producer Streptomyces ramocissimus encodes a minor and kirromycin-sensitive elongation factor Tu. Olsthoorn-Tieleman, L.N., Fischer, S.E., Kraal, B. J. Bacteriol. (2002) [Pubmed]
  5. Genetic and biochemical characterization of kirromycin resistance mutations in Bacillus subtilis. Smith, I., Paress, P. J. Bacteriol. (1978) [Pubmed]
  6. Location of the tufB promoter of E. coli: cotranscription of tufB with four transfer RNA genes. Lee, J.S., An, G., Friesen, J.D., Fill, N.P. Cell (1981) [Pubmed]
  7. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. Rodnina, M.V., Fricke, R., Kuhn, L., Wintermeyer, W. EMBO J. (1995) [Pubmed]
  8. The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli. Mesters, J.R., Zeef, L.A., Hilgenfeld, R., de Graaf, J.M., Kraal, B., Bosch, L. EMBO J. (1994) [Pubmed]
  9. Structure-function relationships in the GTP binding domain of EF-Tu: mutation of Val20, the residue homologous to position 12 in p21. Jacquet, E., Parmeggiani, A. EMBO J. (1988) [Pubmed]
  10. Euglena gracilis chloroplast elongation factor Tu. Purification and initial characterization. Sreedharan, S.P., Beck, C.M., Spremulli, L.L. J. Biol. Chem. (1985) [Pubmed]
  11. A kirromycin resistant elongation factor EF-Tu from Escherichia coli contains a threonine instead of an alanine residue in position 375. Duisterwinkel, F.J., de Graaf, J.M., Kraal, B., Bosch, L. FEBS Lett. (1981) [Pubmed]
  12. The antibiotics kirromycin and pulvomycin bind to different sites on the elongation factor Tu from Escherichia coli. Pingoud, A., Block, W., Urbanke, C., Wolf, H. Eur. J. Biochem. (1982) [Pubmed]
  13. A kirromycin-resistant EF-Tu species reverses streptomycin dependence of Escherichia coli strains mutated in ribosomal protein S12. Zuurmond, A.M., Zeef, L.A., Kraal, B. Microbiology (Reading, Engl.) (1998) [Pubmed]
  14. Natural kirromycin resistance of elongation factor Tu from the kirrothricin producer Streptomyces cinnamoneus. Cappellano, C., Monti, F., Sosio, M., Donadio, S., Sarubbi, E. Microbiology (Reading, Engl.) (1997) [Pubmed]
  15. The elongation factor Tu.kirromycin complex has two binding sites for tRNA molecules. van Noort, J.M., Duisterwinkel, F.J., Jonák, J., Sedlácek, J., Kraal, B., Bosch, L. EMBO J. (1982) [Pubmed]
  16. Spectrophotometric and kinetic studies on the interaction of antibiotic X5108, the N-methylated derivative of kirromycin, with elongation factor Tu from Escherichia coli. Eccleston, J.F. J. Biol. Chem. (1981) [Pubmed]
  17. Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes. Archambaud, C., Gouin, E., Pizarro-Cerda, J., Cossart, P., Dussurget, O. Mol. Microbiol. (2005) [Pubmed]
  18. Mutants of EF-Tu defective in binding aminoacyl-tRNA. Abdulkarim, F., Ehrenberg, M., Hughes, D. FEBS Lett. (1996) [Pubmed]
  19. Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu.GTP. Abdulkarim, F., Liljas, L., Hughes, D. FEBS Lett. (1994) [Pubmed]
  20. Action of pulvomycin and kirromycin on eukaryotic cells. Schmid, B., Anke, T., Wolf, H. FEBS Lett. (1978) [Pubmed]
  21. Pulvomycin-resistant mutants of E.coli elongation factor Tu. Zeef, L.A., Bosch, L., Anborgh, P.H., Cetin, R., Parmeggiani, A., Hilgenfeld, R. EMBO J. (1994) [Pubmed]
  22. Effect of guanine nucleotides on the conformation and stability of chloroplast elongation factor Tu. Lapadat, M.A., Spremulli, L.L. J. Biol. Chem. (1989) [Pubmed]
  23. Enacyloxin IIa pinpoints a binding pocket of elongation factor Tu for development of novel antibiotics. Parmeggiani, A., Krab, I.M., Watanabe, T., Nielsen, R.C., Dahlberg, C., Nyborg, J., Nissen, P. J. Biol. Chem. (2006) [Pubmed]
  24. Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. Crystal structure of the complex between EF-Tu.GDP and aurodox. Vogeley, L., Palm, G.J., Mesters, J.R., Hilgenfeld, R. J. Biol. Chem. (2001) [Pubmed]
  25. Evidence for an internal promoter preceding tufA in the str operon of Escherichia coli. An, G., Lee, J.S., Friesen, J.D. J. Bacteriol. (1982) [Pubmed]
  26. A deletion mutant lacking three out of four transfer RNA genes upstream of the coding region of tufB. Miyajima, A., Yokota, T., Takebe, Y., Nakamura, M., Kaziro, Y. J. Biochem. (1983) [Pubmed]
  27. Characterization of ftsZ gene and its protein product from Streptomyces collinus producing kirromycin. Zhulanova, E., Mikulík, K. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  28. SmpB triggers GTP hydrolysis of elongation factor Tu on ribosomes by compensating for the lack of codon-anticodon interaction during trans-translation initiation. Shimizu, Y., Ueda, T. J. Biol. Chem. (2006) [Pubmed]
  29. Effects of the mutation glycine-222----aspartic acid on the functions of elongation factor Tu. Swart, G.W., Parmeggiani, A., Kraal, B., Bosch, L. Biochemistry (1987) [Pubmed]
  30. Isolation, crystallization and X-ray analysis of the quaternary complex of Phe-tRNA(Phe), EF-Tu, a GTP analog and kirromycin. Kristensen, O., Reshetnikova, L., Nissen, P., Siboska, G., Thirup, S., Nyborg, J. FEBS Lett. (1996) [Pubmed]
  31. Three tuf-like genes in the kirromycin producer Streptomyces ramocissimus. Vijgenboom, E., Woudt, L.P., Heinstra, P.W., Rietveld, K., van Haarlem, J., van Wezel, G.P., Shochat, S., Bosch, L. Microbiology (Reading, Engl.) (1994) [Pubmed]
WikiGenes - Universities