The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

tuf  -  elongation factor Tu

Escherichia coli O157:H7 str. EDL933

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of tuf

  • One such residue, located at position 287 in Escherichia coli EF-Tu, is adjacent to the 5' end of the aa-tRNA and is acidic in all prokaryotic factors but is basic in EF-Tu(mt) [1].
  • A feature that is common to both bacteria and to Thermoanaerobacterium sp. appears to be that the lining and the fibrils crossing the cytoplasm contain a high number of copies of the bacterial elongation factor Tu (EF-Tu) [2].
  • Salmonella typhimurium also contains duplicate tuf genes [3].
  • The tuf gene of Mycoplasma genitalium uses a signal other than a Shine-Dalgarno sequence to promote translation initiation [4].
  • A very similar tuf gene transcription strategy and the same tufp promoter organization with the identical A/T block were found in Bacillus subtilis [5].
 

High impact information on tuf

 

Chemical compound and disease context of tuf

 

Biological context of tuf

 

Anatomical context of tuf

  • The mutations had no effect on EF-Tu-dependent delivery of aminoacyl-tRNA to the ribosome [17].
  • Current research and developmental efforts are aimed at the design of a new class of antibacterial drugs, acting by destabilization of the EF-Tu-containing bacterial cytoskeleton, and of an innovative mode of inducible lysis of recombinant bacteria by controlled destabilization of the EF-Tu-containing cytoskeleton [2].
  • In contrast to the above, when the intracellular protein elongation factor Tu is synthesized in vitro on free polysomes, it is not detectably larger than the authentic form [18].
  • The recombinant EF-Tu was able to catalyse polyU-directed polyPhe synthesis in two heterologous cell-free systems, even as an uncleaved fusion [19].
  • These inclusion bodies additionally contain significant amounts of the heat-shock chaperone DnaK, and putative DnaK substrates such as the elongation factor Tu (ET-Tu) and the metabolic enzymes dihydrolipoamide dehydrogenase (LpdA), tryptophanase (TnaA), and d-tagatose-1,6-bisphosphate aldolase (GatY) [20].
 

Associations of tuf with chemical compounds

  • The importance of P-loop and domain movements in EF-Tu for guanine nucleotide exchange [17].
  • The tuf gene specifies a protein of 395 amino acid residues with a molecular mass of 43,290 Da, including the N-terminal methionine [5].
  • Kirromycin resistance is a recessive phenotype expressed when both tuf genes are mutant [21].
  • These tuf gene-based assays developed in this study provide an alternative to present methods for the identification for lactic acid bacterial species [22].
  • In the elongation cycle of bacterial protein synthesis the interaction between elongation factor-Tu (EF-Tu).guanosine triphosphate (GTP), aminoacyl-transfer RNA (aa-tRNA), and messenger RNA-programmed ribosomes is associated with the hydrolysis of GTP [6].
 

Physical interactions of tuf

  • Both EF-Tu(mt) R335E and E. coli EF-Tu E287R have activities comparable to the corresponding wild-type factors in assays using E. coli Phe-tRNA.(Phe) These data suggest that the residue at position 287 plays an important role in the binding and EF-Tu-mediated delivery of mitochondrial aa-tRNAs to the A-site of the ribosome [1].
  • An important feature of the nucleotide exchange is the structural rearrangement of EF-Tu in the EF-Tu.EF-Ts complex caused by insertion of Phe-81 of EF-Ts between His-84 and His-118 of EF-Tu [17].
 

Regulatory relationships of tuf

  • Deletion of the coiled-coil motif only partially reduced the ability of EF-Ts to stimulate the guanine nucleotide exchange in EF-Tu [23].
 

Other interactions of tuf

 

Analytical, diagnostic and therapeutic context of tuf

References

  1. Mutagenesis of Arg335 in bovine mitochondrial elongation factor Tu and the corresponding residue in the Escherichia coli factor affects interactions with mitochondrial aminoacyl-tRNAs. Hunter, S.E., Spremulli, L.L. RNA biology (2004) [Pubmed]
  2. Cytoskeletal Elements in Bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as Revealed by Electron Microscopy. Mayer, F. J. Mol. Microbiol. Biotechnol. (2006) [Pubmed]
  3. Direct demonstration of duplicate tuf genes in enteric bacteria. Furano, A.V. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  4. A novel translation initiation region from Mycoplasma genitalium that functions in Escherichia coli. Loechel, S., Inamine, J.M., Hu, P.C. Nucleic Acids Res. (1991) [Pubmed]
  5. Structure and expression of elongation factor Tu from Bacillus stearothermophilus. Krásný, L., Mesters, J.R., Tieleman, L.N., Kraal, B., Fucík, V., Hilgenfeld, R., Jonák, J. J. Mol. Biol. (1998) [Pubmed]
  6. Toward a model for the interaction between elongation factor Tu and the ribosome. Weijland, A., Parmeggiani, A. Science (1993) [Pubmed]
  7. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. Valle, M., Sengupta, J., Swami, N.K., Grassucci, R.A., Burkhardt, N., Nierhaus, K.H., Agrawal, R.K., Frank, J. EMBO J. (2002) [Pubmed]
  8. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. Pape, T., Wintermeyer, W., Rodnina, M.V. EMBO J. (1998) [Pubmed]
  9. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch, E., Pape, T., Rodnina, M.V., Kraal, B., Wintermeyer, W. EMBO J. (1996) [Pubmed]
  10. Three tuf-like genes in the kirromycin producer Streptomyces ramocissimus. Vijgenboom, E., Woudt, L.P., Heinstra, P.W., Rietveld, K., van Haarlem, J., van Wezel, G.P., Shochat, S., Bosch, L. Microbiology (Reading, Engl.) (1994) [Pubmed]
  11. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. la Cour, T.F., Nyborg, J., Thirup, S., Clark, B.F. EMBO J. (1985) [Pubmed]
  12. The tRNA specificity of Thermus thermophilus EF-Tu. Asahara, H., Uhlenbeck, O.C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  13. Single turnover kinetic studies of guanosine triphosphate hydrolysis and peptide formation in the elongation factor Tu-dependent binding of aminoacyl-tRNA to Escherichia coli ribosomes. Thompson, R.C., Dix, D.B., Eccleston, J.F. J. Biol. Chem. (1980) [Pubmed]
  14. EPR studies of the Mn(II) complex with elongation factor Tu and GDP Identification of oxygen ligands to Mn(II) by observation of 17O superhyperfine coupling. Eccleston, J.F., Webb, M.R., Ash, D.E., Reed, G.H. J. Biol. Chem. (1981) [Pubmed]
  15. Homologous recombination between the tuf genes of Salmonella typhimurium. Abdulkarim, F., Hughes, D. J. Mol. Biol. (1996) [Pubmed]
  16. Monoclonal antibodies specific for elongation factor Tu and complete nucleotide sequence of the tuf gene in Mycobacterium tuberculosis. Carlin, N.I., Löfdahl, S., Magnusson, M. Infect. Immun. (1992) [Pubmed]
  17. The importance of P-loop and domain movements in EF-Tu for guanine nucleotide exchange. Dahl, L.D., Wieden, H.J., Rodnina, M.V., Knudsen, C.R. J. Biol. Chem. (2006) [Pubmed]
  18. Precursors of three exported proteins in Escherichia coli. Randall, L.L., Hardy, S.J., Josefsson, L.G. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  19. Natural kirromycin resistance of elongation factor Tu from the kirrothricin producer Streptomyces cinnamoneus. Cappellano, C., Monti, F., Sosio, M., Donadio, S., Sarubbi, E. Microbiology (Reading, Engl.) (1997) [Pubmed]
  20. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. Rinas, U., Hoffmann, F., Betiku, E., Estap??, D., Marten, S. J. Biotechnol. (2007) [Pubmed]
  21. Mutant ribosomes can generate dominant kirromycin resistance. Tubulekas, I., Buckingham, R.H., Hughes, D. J. Bacteriol. (1991) [Pubmed]
  22. Analysis, characterization, and loci of the tuf genes in lactobacillus and bifidobacterium species and their direct application for species identification. Ventura, M., Canchaya, C., Meylan, V., Klaenhammer, T.R., Zink, R. Appl. Environ. Microbiol. (2003) [Pubmed]
  23. Functional effects of deleting the coiled-coil motif in Escherichia coli elongation factor Ts. Karring, H., Björnsson, A., Thirup, S., Clark, B.F., Knudsen, C.R. Eur. J. Biochem. (2003) [Pubmed]
  24. Properties of a genetically engineered G domain of elongation factor Tu. Parmeggiani, A., Swart, G.W., Mortensen, K.K., Jensen, M., Clark, B.F., Dente, L., Cortese, R. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  25. Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold. Matte, A., Goldie, H., Sweet, R.M., Delbaere, L.T. J. Mol. Biol. (1996) [Pubmed]
  26. Elongation factor Tu and DnaK are transferred from the cytoplasm to the periplasm of Escherichia coli during osmotic downshock presumably via the mechanosensitive channel mscL. Berrier, C., Garrigues, A., Richarme, G., Ghazi, A. J. Bacteriol. (2000) [Pubmed]
  27. A mutant of Escherichia coli with an altered elongation factor Tu. Pedersen, S., Blumenthal, R.M., Reeh, S., Russell, L.B., Lemaux, P., Laursen, R.A., Nagarkatti, S., Friesen, J.D. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  28. The amino acid sequence of elongation factor Tu of Escherichia coli. The large cyanogen bromide peptides. L'Italien, J.J., Laursen, R.A. J. Biol. Chem. (1981) [Pubmed]
  29. The elongation factor Tu from Escherichia coli, aminoacyl-tRNA, and guanosine tetraphosphate form a ternary complex which is bound by programmed ribosomes. Pingoud, A., Gast, F.U., Block, W., Peters, F. J. Biol. Chem. (1983) [Pubmed]
  30. Precursor for elongation factor Tu from Escherichia coli. Lifson, E.R., Lindahl, L., Zengel, J.M. J. Bacteriol. (1986) [Pubmed]
 
WikiGenes - Universities