The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

tuf  -  elongation factor Tu

Escherichia coli O157:H7 str. EDL933

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of tuf

 

High impact information on tuf

 

Chemical compound and disease context of tuf

 

Biological context of tuf

 

Anatomical context of tuf

 

Associations of tuf with chemical compounds

  • The importance of P-loop and domain movements in EF-Tu for guanine nucleotide exchange [17].
  • Bacteria carryong only one tuf gene from the resistant mutant are still mocimycin sensitive [20].
  • Southern analysis confirmed replacement of the chromosomal tufA or tufB gene by a chloramphenicol resistance marker, demonstrating that both tuf genes are individually dispensable for growth [21].
  • The purpose of our study was to examine the expression of a cluster of genes that are required for translation in C. trachomatis serovar F: infA (encoding Initiation Factor 1), tRNA(Thr), tuf (encoding Elongation Factor Tu), and tRNA(Trp) [22].
  • Its replacement by Asp does not abolish the ability of EF-Tu to sustain protein synthesis [23].
 

Physical interactions of tuf

  • Both EF-Tu(mt) R335E and E. coli EF-Tu E287R have activities comparable to the corresponding wild-type factors in assays using E. coli Phe-tRNA.(Phe) These data suggest that the residue at position 287 plays an important role in the binding and EF-Tu-mediated delivery of mitochondrial aa-tRNAs to the A-site of the ribosome [1].
  • An important feature of the nucleotide exchange is the structural rearrangement of EF-Tu in the EF-Tu.EF-Ts complex caused by insertion of Phe-81 of EF-Ts between His-84 and His-118 of EF-Tu [17].
 

Enzymatic interactions of tuf

  • 70S ribosomes, in contrast to 50S subunits, neither release EF-Tu nor rapidly hydrolyze GTP when added to the 30S-EF-Tu complexes [24].
 

Other interactions of tuf

  • Suppression of rpsL phenotypes by tuf mutations reveals a unique relationship between translation elongation and growth rate [25].
  • Nucleotide binding proteins, including ras, elongation factor Tu, adenylate kinase, and the mitochondrial F1-ATPase have a glycine-rich motif known as the P-loop or the Walker A sequence (Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982) EMBO J. 1, 945-951) [26].
  • In the present paper, we determine the contribution of the contacts between helix D of EF-Tu at the base side of the nucleotide and the N-terminal domain of EF-Ts to the catalysis [27].
  • This points to an inhibition mechanism in which EF-Tu is the dominant target of enacyloxin IIa and in which a ribosome with a sensitive EF-Tu blocks mRNA translation for upstream ribosomes with resistant EF-Tus, a mechanism similar to that of the unrelated antibiotic kirromycin [28].
  • We propose that the nutrient-dependent methylation of EF-Tu may be involved in the regulation of growth, possibly as a principal component of an unidentified signal transduction pathway in bacteria [29].
 

Analytical, diagnostic and therapeutic context of tuf

References

  1. Mutagenesis of Arg335 in bovine mitochondrial elongation factor Tu and the corresponding residue in the Escherichia coli factor affects interactions with mitochondrial aminoacyl-tRNAs. Hunter, S.E., Spremulli, L.L. RNA biology (2004) [Pubmed]
  2. Cytoskeletal Elements in Bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as Revealed by Electron Microscopy. Mayer, F. J. Mol. Microbiol. Biotechnol. (2006) [Pubmed]
  3. Direct demonstration of duplicate tuf genes in enteric bacteria. Furano, A.V. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  4. Two tuf genes in the cyanobacterium Spirulina platensis. Tiboni, O., Di Pasquale, G., Ciferri, O. J. Bacteriol. (1984) [Pubmed]
  5. Analysis, characterization, and loci of the tuf genes in lactobacillus and bifidobacterium species and their direct application for species identification. Ventura, M., Canchaya, C., Meylan, V., Klaenhammer, T.R., Zink, R. Appl. Environ. Microbiol. (2003) [Pubmed]
  6. Regulation of the synthesis of E. coli elongation factor Tu. Young, F.S., Furano, A.V. Cell (1981) [Pubmed]
  7. Visualization of elongation factor Tu on the Escherichia coli ribosome. Stark, H., Rodnina, M.V., Rinke-Appel, J., Brimacombe, R., Wintermeyer, W., van Heel, M. Nature (1997) [Pubmed]
  8. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome. Cetin, R., Krab, I.M., Anborgh, P.H., Cool, R.H., Watanabe, T., Sugiyama, T., Izaki, K., Parmeggiani, A. EMBO J. (1996) [Pubmed]
  9. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. Rodnina, M.V., Fricke, R., Kuhn, L., Wintermeyer, W. EMBO J. (1995) [Pubmed]
  10. Elongation factor Tu resistant to kirromycin in an Escherichia coli mutant altered in both tuf genes. Fischer, E., Wolf, H., Hantke, K., Parmeggiani, A. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  11. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. la Cour, T.F., Nyborg, J., Thirup, S., Clark, B.F. EMBO J. (1985) [Pubmed]
  12. Isomeric aminoacyl-tRNAs are both bound by elongation factor Tu. Hecht, S.M., Tan, K.H., Chinault, A.C., Arcari, P. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  13. The amino acid sequence of elongation factor Tu of Escherichia coli. The large cyanogen bromide peptides. L'Italien, J.J., Laursen, R.A. J. Biol. Chem. (1981) [Pubmed]
  14. In vivo methylation of prokaryotic elongation factor Tu. Ames, G.F., Niakido, K. J. Biol. Chem. (1979) [Pubmed]
  15. Mutants of elongation factor Tu promote ribosomal frameshifting and nonsense readthrough. Hughes, D., Atkins, J.F., Thompson, S. EMBO J. (1987) [Pubmed]
  16. An elongation factor Tu (EF-Tu) resistant to the EF-Tu inhibitor GE2270 in the producing organism Planobispora rosea. Sosio, M., Amati, G., Cappellano, C., Sarubbi, E., Monti, F., Donadio, S. Mol. Microbiol. (1996) [Pubmed]
  17. The importance of P-loop and domain movements in EF-Tu for guanine nucleotide exchange. Dahl, L.D., Wieden, H.J., Rodnina, M.V., Knudsen, C.R. J. Biol. Chem. (2006) [Pubmed]
  18. Protein composition of Vitreoscilla hemoglobin inclusion bodies produced in Escherichia coli. Hart, R.A., Rinas, U., Bailey, J.E. J. Biol. Chem. (1990) [Pubmed]
  19. Functional and structural studies on a tryptic fragment of eucaryotic elongation factor Tu from rabbit reticulocytes. Slobin, L.I., Clark, R.V., Olson, M.O. Biochemistry (1981) [Pubmed]
  20. Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu. Van de Klundert, J.A., Van der Meide, P.H., Van de Putte, P., Bosch, L. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  21. Either of the chromosomal tuf genes of E. coli K-12 can be deleted without loss of cell viability. Zuurmond, A.M., Rundlöf, A.K., Kraal, B. Mol. Gen. Genet. (1999) [Pubmed]
  22. Identification and characterization of promoters regulating tuf expression in Chlamydia trachomatis serovar F. Shen, L., Shi, Y., Douglas, A.L., Hatch, T.P., O'Connell, C.M., Chen, J.M., Zhang, Y.X. Arch. Biochem. Biophys. (2000) [Pubmed]
  23. Specific alterations of the EF-Tu polypeptide chain considered in the light of its three-dimensional structure. Duisterwinkel, F.J., Kraal, B., De Graaf, J.M., Talens, A., Bosch, L., Swart, G.W., Parmeggiani, A., La Cour, T.F., Nyborg, J., Clark, B.F. EMBO J. (1984) [Pubmed]
  24. Elongation factor Tu ternary complex binds to small ribosomal subunits in a functionally active state. Langer, J.A., Jurnak, F., Lake, J.A. Biochemistry (1984) [Pubmed]
  25. Suppression of rpsL phenotypes by tuf mutations reveals a unique relationship between translation elongation and growth rate. Tubulekas, I., Hughes, D. Mol. Microbiol. (1993) [Pubmed]
  26. Primary structural constraints of P-loop of mitochondrial F1-ATPase from yeast. Shen, H., Yao, B.Y., Mueller, D.M. J. Biol. Chem. (1994) [Pubmed]
  27. Mechanism of elongation factor (EF)-Ts-catalyzed nucleotide exchange in EF-Tu. Contribution of contacts at the guanine base. Wieden, H.J., Gromadski, K., Rodnin, D., Rodnina, M.V. J. Biol. Chem. (2002) [Pubmed]
  28. Mutant EF-Tu species reveal novel features of the enacyloxin IIa inhibition mechanism on the ribosome. Zuurmond, A.M., Olsthoorn-Tieleman, L.N., Martien de Graaf, J., Parmeggiani, A., Kraal, B. J. Mol. Biol. (1999) [Pubmed]
  29. Elongation factor Tu is methylated in response to nutrient deprivation in Escherichia coli. Young, C.C., Bernlohr, R.W. J. Bacteriol. (1991) [Pubmed]
  30. Structure and expression of elongation factor Tu from Bacillus stearothermophilus. Krásný, L., Mesters, J.R., Tieleman, L.N., Kraal, B., Fucík, V., Hilgenfeld, R., Jonák, J. J. Mol. Biol. (1998) [Pubmed]
  31. Both genes for EF-Tu in Salmonella typhimurium are individually dispensable for growth. Hughes, D. J. Mol. Biol. (1990) [Pubmed]
  32. Elongation factor Tu: a regulatory GTPase with an integrated effector. Sprinzl, M. Trends Biochem. Sci. (1994) [Pubmed]
  33. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Rodnina, M.V., Wintermeyer, W. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
 
WikiGenes - Universities