The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cryoelectron Microscopy

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cryoelectron Microscopy

 

High impact information on Cryoelectron Microscopy

 

Chemical compound and disease context of Cryoelectron Microscopy

 

Biological context of Cryoelectron Microscopy

  • Here we analyse three-dimensional cryo-electron microscopy maps of the Escherichia coli 70S ribosome in various functional states, and show that both EF-G binding and subsequent GTP hydrolysis lead to ratchet-like rotations of the small 30S subunit relative to the large 50S subunit [12].
  • A model for the rigor complex of F actin and the myosin head was obtained by combining the molecular structures of the individual proteins with the low-resolution electron density maps of the complex derived by cryo-electron microscopy and image analysis [13].
  • The cryo-electron microscopy reconstructions of echovirus 7 complexed with DAF show that the DAF-binding regions are located close to the icosahedral twofold axes, in contrast to other enterovirus complexes where the viral canyon is the receptor binding site [14].
  • The structure of the lipoplex formed from DNA and the sugar-based cationic gemini surfactant 1, which exhibits excellent transfection efficiency, has been investigated in the pH range 8.8-3.0 utilizing small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-TEM) [15].
  • Some TM proteins yield more easily to structure determination using cryo electron microscopy (cryo-EM), though this technique most often results in lower resolution structures, precluding an unambiguous assignment of TM amino acid sequences to the helices seen in the structure [16].
 

Anatomical context of Cryoelectron Microscopy

 

Associations of Cryoelectron Microscopy with chemical compounds

 

Gene context of Cryoelectron Microscopy

 

Analytical, diagnostic and therapeutic context of Cryoelectron Microscopy

References

  1. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Kuhn, R.J., Zhang, W., Rossmann, M.G., Pletnev, S.V., Corver, J., Lenches, E., Jones, C.T., Mukhopadhyay, S., Chipman, P.R., Strauss, E.G., Baker, T.S., Strauss, J.H. Cell (2002) [Pubmed]
  2. Visualization of elongation factor Tu on the Escherichia coli ribosome. Stark, H., Rodnina, M.V., Rinke-Appel, J., Brimacombe, R., Wintermeyer, W., van Heel, M. Nature (1997) [Pubmed]
  3. Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Prasad, B.V., Burns, J.W., Marietta, E., Estes, M.K., Chiu, W. Nature (1990) [Pubmed]
  4. Three-dimensional structure of the rotavirus haemagglutinin VP4 by cryo-electron microscopy and difference map analysis. Yeager, M., Berriman, J.A., Baker, T.S., Bellamy, A.R. EMBO J. (1994) [Pubmed]
  5. Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Heymann, J.B., Cheng, N., Newcomb, W.W., Trus, B.L., Brown, J.C., Steven, A.C. Nat. Struct. Biol. (2003) [Pubmed]
  6. Cellular and molecular biology of the aquaporin water channels. Borgnia, M., Nielsen, S., Engel, A., Agre, P. Annu. Rev. Biochem. (1999) [Pubmed]
  7. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Pokidysheva, E., Zhang, Y., Battisti, A.J., Bator-Kelly, C.M., Chipman, P.R., Xiao, C., Gregorio, G.G., Hendrickson, W.A., Kuhn, R.J., Rossmann, M.G. Cell (2006) [Pubmed]
  8. Structure of the human transferrin receptor-transferrin complex. Cheng, Y., Zak, O., Aisen, P., Harrison, S.C., Walz, T. Cell (2004) [Pubmed]
  9. Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Gilbert, R.J., Jiménez, J.L., Chen, S., Tickle, I.J., Rossjohn, J., Parker, M., Andrew, P.W., Saibil, H.R. Cell (1999) [Pubmed]
  10. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Roseman, A.M., Chen, S., White, H., Braig, K., Saibil, H.R. Cell (1996) [Pubmed]
  11. The organization of the spike complex of Semliki Forest virus. Vénien-Bryan, C., Fuller, S.D. J. Mol. Biol. (1994) [Pubmed]
  12. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Frank, J., Agrawal, R.K. Nature (2000) [Pubmed]
  13. Structure of the actin-myosin complex and its implications for muscle contraction. Rayment, I., Holden, H.M., Whittaker, M., Yohn, C.B., Lorenz, M., Holmes, K.C., Milligan, R.A. Science (1993) [Pubmed]
  14. Structure of decay-accelerating factor bound to echovirus 7: a virus-receptor complex. He, Y., Lin, F., Chipman, P.R., Bator, C.M., Baker, T.S., Shoham, M., Kuhn, R.J., Medof, M.E., Rossmann, M.G. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  15. Transfection mediated by gemini surfactants: engineered escape from the endosomal compartment. Bell, P.C., Bergsma, M., Dolbnya, I.P., Bras, W., Stuart, M.C., Rowan, A.E., Feiters, M.C., Engberts, J.B. J. Am. Chem. Soc. (2003) [Pubmed]
  16. Assigning transmembrane segments to helices in intermediate-resolution structures. Enosh, A., Fleishman, S.J., Ben-Tal, N., Halperin, D. Bioinformatics (2004) [Pubmed]
  17. Structures of kinesin and kinesin-microtubule interactions. Mandelkow, E., Hoenger, A. Curr. Opin. Cell Biol. (1999) [Pubmed]
  18. Evidence for cleft closure in actomyosin upon ADP release. Volkmann, N., Hanein, D., Ouyang, G., Trybus, K.M., DeRosier, D.J., Lowey, S. Nat. Struct. Biol. (2000) [Pubmed]
  19. Expression and subcellular localization of NRAMP1 in human neutrophil granules. Canonne-Hergaux, F., Calafat, J., Richer, E., Cellier, M., Grinstein, S., Borregaard, N., Gros, P. Blood (2002) [Pubmed]
  20. Small angle X-ray scattering and electron cryomicroscopy study of actin filaments: role of the bound nucleotide in the structure of F-actin. Lepault, J., Ranck, J.L., Erk, I., Carlier, M.F. J. Struct. Biol. (1994) [Pubmed]
  21. The projection structure of microsomal glutathione transferase. Hebert, H., Schmidt-Krey, I., Morgenstern, R. EMBO J. (1995) [Pubmed]
  22. Projection structure of the cytochrome bo ubiquinol oxidase from Escherichia coli at 6 A resolution. Gohlke, U., Warne, A., Saraste, M. EMBO J. (1997) [Pubmed]
  23. Evidence for a conformational change in actin induced by fimbrin (N375) binding. Hanein, D., Matsudaira, P., DeRosier, D.J. J. Cell Biol. (1997) [Pubmed]
  24. A novel immunogold cryoelectron microscopic approach to investigate the structure of the intracellular and extracellular forms of vaccinia virus. Roos, N., Cyrklaff, M., Cudmore, S., Blasco, R., Krijnse-Locker, J., Griffiths, G. EMBO J. (1996) [Pubmed]
  25. Structure of a human rhinovirus complexed with its receptor molecule. Olson, N.H., Kolatkar, P.R., Oliveira, M.A., Cheng, R.H., Greve, J.M., McClelland, A., Baker, T.S., Rossmann, M.G. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  26. GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. Shorter, J., Watson, R., Giannakou, M.E., Clarke, M., Warren, G., Barr, F.A. EMBO J. (1999) [Pubmed]
  27. A giant protease with a twist: the TPP II complex from Drosophila studied by electron microscopy. Rockel, B., Peters, J., Kühlmorgen, B., Glaeser, R.M., Baumeister, W. EMBO J. (2002) [Pubmed]
  28. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Bella, J., Kolatkar, P.R., Marlor, C.W., Greve, J.M., Rossmann, M.G. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  29. Cryoelectron microscopy imaging of recombinant and tissue derived vaults: localization of the MVP N termini and VPARP. Mikyas, Y., Makabi, M., Raval-Fernandes, S., Harrington, L., Kickhoefer, V.A., Rome, L.H., Stewart, P.L. J. Mol. Biol. (2004) [Pubmed]
  30. Three-dimensional structure and regulation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Rivera-Calzada, A., Maman, J.D., Maman, J.P., Spagnolo, L., Pearl, L.H., Llorca, O. Structure (Camb.) (2005) [Pubmed]
  31. Bacterial Na(+)-ATP synthase has an undecameric rotor. Stahlberg, H., Müller, D.J., Suda, K., Fotiadis, D., Engel, A., Meier, T., Matthey, U., Dimroth, P. EMBO Rep. (2001) [Pubmed]
  32. Efficient neutralization of foot-and-mouth disease virus by monovalent antibody binding. Verdaguer, N., Fita, I., Domingo, E., Mateu, M.G. J. Virol. (1997) [Pubmed]
  33. Coiled-coil packing in spermine-induced tropomyosin crystals. A comparative study of three forms. Xie, X., Rao, S., Walian, P., Hatch, V., Phillips, G.N., Cohen, C. J. Mol. Biol. (1994) [Pubmed]
  34. Structural characterisation of islet amyloid polypeptide fibrils. Sumner Makin, O., Serpell, L.C. J. Mol. Biol. (2004) [Pubmed]
  35. Filaments of the Ure2p prion protein have a cross-beta core structure. Baxa, U., Cheng, N., Winkler, D.C., Chiu, T.K., Davies, D.R., Sharma, D., Inouye, H., Kirschner, D.A., Wickner, R.B., Steven, A.C. J. Struct. Biol. (2005) [Pubmed]
 
WikiGenes - Universities