The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

beta-Rhodinol     (3S)-3,7-dimethyloct-6-en-1-ol

Synonyms: CHEBI:88, CPD-7980, CCRIS 7452, AG-J-09255, CHEMBL1907995, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rhodinol

 

High impact information on Rhodinol

  • Experiments were carried out to construct pseudomonad strains capable of the biodegradation of certain recalcitrant branched hydrocarbons via a combination of alkane and citronellol degradative pathways [4].
  • In the case of Pseudomonas citronellolis, sensitivity to isoprenols is reduced by prior induction of the isoprenoid degradative pathway via either growth on succinate in the presence of citronellol or growth on citronellic acid [5].
  • Taken together, our results demonstrated an anticonvulsant activity of the citronellol that could be, at least in part, explained by the diminution of the action potential amplitude [2].
  • Pseudomonas aeruginosa is able to grow on acyclic monoterpenes (citronellol, citronellate, geraniol and geranylate), and on other methyl-branched compounds such as leucine or isovalerate [6].
  • Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: evidence for different metabolic routes for oxidation of geraniol and citronellol [7].
 

Biological context of Rhodinol

 

Associations of Rhodinol with other chemical compounds

References

  1. The branched-chain dodecylbenzene sulfonate degradation pathway of Pseudomonas aeruginosa W51D involves a novel route for degradation of the surfactant lateral alkyl chain. Campos-García, J., Esteve, A., Vázquez-Duhalt, R., Ramos, J.L., Soberón-Chávez, G. Appl. Environ. Microbiol. (1999) [Pubmed]
  2. Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. de Sousa, D.P., Gonçalves, J.C., Quintans-Júnior, L., Cruz, J.S., Araújo, D.A., de Almeida, R.N. Neurosci. Lett. (2006) [Pubmed]
  3. The value of a mixture of cassia and citronella oils for detection of hypersensitivity of essential oils. Rudzki, E., Grzywa, Z. Dermatosen in Beruf und Umwelt. Occupation and environment. (1985) [Pubmed]
  4. Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis. Fall, R.R., Brown, J.L., Schaeffer, T.L. Appl. Environ. Microbiol. (1979) [Pubmed]
  5. Biodegradation of acyclic isoprenoids by Pseudomonas species. Cantwell, S.G., Lau, E.P., Watt, D.S., Fall, R.R. J. Bacteriol. (1978) [Pubmed]
  6. Methylcrotonyl-CoA and geranyl-CoA carboxylases are involved in leucine/isovalerate utilization (Liu) and acyclic terpene utilization (Atu), and are encoded by liuB/liuD and atuC/atuF, in Pseudomonas aeruginosa. Höschle, B., Gnau, V., Jendrossek, D. Microbiology (Reading, Engl.) (2005) [Pubmed]
  7. Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: evidence for different metabolic routes for oxidation of geraniol and citronellol. Höschle, B., Jendrossek, D. Microbiology (Reading, Engl.) (2005) [Pubmed]
  8. Biotransformation of citronellol by the basidiomycete Cystoderma carcharias in an aerated-membrane bioreactor. Onken, J., Berger, R.G. Appl. Microbiol. Biotechnol. (1999) [Pubmed]
  9. Optical resolution of racemic citronellol via a double coupling system in an interface bioreactor. Oda, S., Sugai, T., Ohta, H. J. Biosci. Bioeng. (1999) [Pubmed]
  10. Relative effectiveness of pretreatments on performance of Rhizomucor miehei lipase in nonpolar reaction media. Garcia, R.A., Riley, M.R. Appl. Biochem. Biotechnol. (2005) [Pubmed]
  11. Action of some new insect growth regulators on mosquito vectors. Part II: Geraniol based diethers. Sharma, R.N., Pawar, P.V., Patwardhan, S.A., Phadnis, A.P. The Journal of communicable diseases. (1993) [Pubmed]
  12. Cytochrome P-450 in plant/insect interactions: geraniol 10-hydroxylase and the biosynthesis of iridoid monoterpenoids. Hallahan, D.L., West, J.M. Drug metabolism and drug interactions. (1995) [Pubmed]
  13. Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. King, A., Richard Dickinson, J. Yeast (2000) [Pubmed]
  14. Antifungal action and antiaflatoxigenic properties of some essential oil constituents. Mahmoud, A.L. Lett. Appl. Microbiol. (1994) [Pubmed]
  15. Absolute configuration of chiral terpenes in marking pheromones of bumblebees and cuckoo bumblebees. Luxová, A., Urbanová, K., Valterová, I., Terzo, M., Borg-Karlson, A.K. Chirality. (2004) [Pubmed]
  16. Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp. Shin, S., Lim, S. J. Appl. Microbiol. (2004) [Pubmed]
  17. Catabolism of geraniol by cell suspension cultures of Citrus limon. Berger, R.G., Akkan, Z., Drawert, F. Biochim. Biophys. Acta (1990) [Pubmed]
 
WikiGenes - Universities