The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

m-Chloraniline     3-chloroaniline

Synonyms: PubChem20239, SureCN33289, CHEMBL325415, ACMC-1C2VE, CCRIS 3402, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of m-Chlorophenylamine


High impact information on m-Chlorophenylamine

  • Each of the aniline derivatives were oxidized by the mutants at rates that exceeded that of the wild-type enzyme, and the rate constant for m-chloroaniline was 400-fold faster for W51F than for wild-type CCP [5].
  • We examined the diversity of the plasmids and of the gene tdnQ, involved in the oxidative deamination of aniline, in five bacterial strains that are able to metabolize both aniline and 3-chloroaniline (3-CA) [2].
  • Artificial selection of microbial ecosystems for 3-chloroaniline biodegradation [6].
  • The major metabolite formed from 3-chloronitrobenzene by isolated hepatocytes was 3-chloroaniline (31% of the added substrate in 90 min) [7].
  • AIMS: The applicability of plasmid pNB2 for bioaugmentation of bacteria in model wastewater treatment reactors receiving 3-chloroaniline (3-CA) was investigated [8].

Chemical compound and disease context of m-Chlorophenylamine


Biological context of m-Chlorophenylamine


Anatomical context of m-Chlorophenylamine

  • Prolonged adaptation of Ca-alginate immobilized cells of Pseudomonas acidovorans CA28 to a mixture of 3-chloroaniline (3-CA)1) and 2-CA and subsequently to 2-CA as sole substrate led to the isolation of another strain, termed CA50 with the additional capability of utilizing 2-CA as sole source of carbon, nitrogen, and energy [12].

Associations of m-Chlorophenylamine with other chemical compounds


Gene context of m-Chlorophenylamine

  • 3-Chloroaniline also was the only aniline compound to increase plasma ALT/GPT activity at 48 h [14].

Analytical, diagnostic and therapeutic context of m-Chlorophenylamine


  1. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Boon, N., Goris, J., De Vos, P., Verstraete, W., Top, E.M. Appl. Environ. Microbiol. (2000) [Pubmed]
  2. Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Boon, N., Goris, J., De Vos, P., Verstraete, W., Top, E.M. Appl. Environ. Microbiol. (2001) [Pubmed]
  3. Comparative gavage subchronic toxicity studies of o-chloroaniline and m-chloroaniline in F344 rats and B6C3F1 mice. Hejtmancik, M.R., Trela, B.A., Kurtz, P.J., Persing, R.L., Ryan, M.J., Yarrington, J.T., Chhabra, R.S. Toxicol. Sci. (2002) [Pubmed]
  4. Characterization of isofunctional ring-cleaving enzymes in aniline and 3-chloroaniline degradation by Pseudomonas acidovorans CA28. Hinteregger, C., Loidl, M., Streichsbier, F. FEMS Microbiol. Lett. (1992) [Pubmed]
  5. Enhanced oxidation of aniline derivatives by two mutants of cytochrome c peroxidase at tryptophan 51. Roe, J.A., Goodin, D.B. J. Biol. Chem. (1993) [Pubmed]
  6. Artificial selection of microbial ecosystems for 3-chloroaniline biodegradation. Swenson, W., Arendt, J., Wilson, D.S. Environ. Microbiol. (2000) [Pubmed]
  7. Metabolism of chloronitrobenzenes by isolated rat hepatocytes. Rickert, D.E., Held, S.D. Drug Metab. Dispos. (1990) [Pubmed]
  8. Plasmid-mediated bioaugmentation of activated sludge bacteria in a sequencing batch moving bed reactor using pNB2. Bathe, S., Schwarzenbeck, N., Hausner, M. Lett. Appl. Microbiol. (2005) [Pubmed]
  9. Conjugal transfer of plasmid pNB2 to activated sludge bacteria leads to 3-chloroaniline degradation in enrichment cultures. Bathe, S. Lett. Appl. Microbiol. (2004) [Pubmed]
  10. Cadmium-induced alterations of chlorpropham metabolism in isolated rat hepatocytes. Alary, J., Carrera, G., Lamboeuf, Y., Escrieut, C. Toxicology (1989) [Pubmed]
  11. Aniline and 3-chloroaniline degrading bacteria: genetics and possible applications. Boon, N., Lievens, H., Verstraete, W., Top, E.M. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen) (2001) [Pubmed]
  12. Pseudomonas acidovorans: a bacterium capable of mineralizing 2-chloroaniline. Hinteregger, C., Loidl, M., Streichsbier, F. J. Basic Microbiol. (1994) [Pubmed]
  13. The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water. Emtiazi, G., Satarii, M., Mazaherion, F. Water Res. (2001) [Pubmed]
  14. Acute renal and hepatic effects induced by 3-haloanilines in the Fischer 344 rat. Rankin, G.O., Valentovic, M.A., Nicoll, D.W., Ball, J.G., Anestis, D.K., Brown, P.I., Hubbard, J.L. Journal of applied toxicology : JAT. (1995) [Pubmed]
  15. Bioaugmenting bioreactors for the continuous removal of 3-chloroaniline by a slow release approach. Boon, N., De Gelder, L., Lievens, H., Siciliano, S.D., Top, E.M., Verstraete, W. Environ. Sci. Technol. (2002) [Pubmed]
WikiGenes - Universities