The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Dextrowarfarin     2-hydroxy-3-[(1R)-3-oxo-1- phenyl...

Synonyms:
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of R-WARFARIN

 

High impact information on R-WARFARIN

 

Chemical compound and disease context of R-WARFARIN

 

Biological context of R-WARFARIN

 

Anatomical context of R-WARFARIN

  • Hepatocytes were isolated by a collagenase perfusion technique and maintained for 24 hr in Waymouth's medium containing 0.1 mM (R)-warfarin [12].
  • Anti-CYP2C9 antibodies inhibited completely the 7-hydroxylation of S-warfarin, but not R-warfarin, catalyzed by human liver microsomes, while anti-CYP1A2 inhibited R-warfarin 7-hydroxylation by about 70% [13].
  • Finally, a strong correlation between (S)-mephenytoin 4-hydroxylation and (R)-warfarin 8-hydroxylation activities in furafylline-pretreated microsomes was demonstrated in 14 human liver microsomal preparations (r2 = 0.97) [14].
  • Consistently, we show that TCDD treatment led to induction of CYP1A1 in responsive human cancer cell lines including HepG2, LS174T, and MCF-7, as determined by Western blotting and CYP1A form-selective R-warfarin 6- and 8-hydroxylation [15].
 

Associations of R-WARFARIN with other chemical compounds

 

Gene context of R-WARFARIN

 

Analytical, diagnostic and therapeutic context of R-WARFARIN

References

  1. Disposition of drugs in cystic fibrosis. VI. In vivo activity of cytochrome P450 isoforms involved in the metabolism of (R)-warfarin (including P450 3A4) is not enhanced in cystic fibrosis. Wang, J.P., Unadkat, J.D., McNamara, S., O'Sullivan, T.A., Smith, A.L., Trager, W.F., Ramsey, B. Clin. Pharmacol. Ther. (1994) [Pubmed]
  2. The warfarin-sulfinpyrazone interaction: stereochemical considerations. Toon, S., Low, L.K., Gibaldi, M., Trager, W.F., O'Reilly, R.A., Motley, C.H., Goulart, D.A. Clin. Pharmacol. Ther. (1986) [Pubmed]
  3. Microbial transformations of warfarin: stereoselective reduction by Nocardia corallina and Arthrobacter species. Davis, P.J., Rizzo, J.D. Appl. Environ. Microbiol. (1982) [Pubmed]
  4. A PK-PD Model for Predicting the Impact of Age, CYP2C9, and VKORC1 Genotype on Individualization of Warfarin Therapy. Hamberg, A.K., Dahl, M.L., Barban, M., Scordo, M.G., Wadelius, M., Pengo, V., Padrini, R., Jonsson, E.N. Clin. Pharmacol. Ther. (2007) [Pubmed]
  5. VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Obayashi, K., Nakamura, K., Kawana, J., Ogata, H., Hanada, K., Kurabayashi, M., Hasegawa, A., Yamamoto, K., Horiuchi, R. Clin. Pharmacol. Ther. (2006) [Pubmed]
  6. Potentiation of anticoagulant effect of warfarin caused by enantioselective metabolic inhibition by the uricosuric agent benzbromarone. Takahashi, H., Sato, T., Shimoyama, Y., Shioda, N., Shimizu, T., Kubo, S., Tamura, N., Tainaka, H., Yasumori, T., Echizen, H. Clin. Pharmacol. Ther. (1999) [Pubmed]
  7. Dynamic interaction between disulfiram and separated enantiomorphs of racemic warfarin. O'Reilly, R.A. Clin. Pharmacol. Ther. (1981) [Pubmed]
  8. Functional cytochrome P4503A isoforms in human embryonic tissues: expression during organogenesis. Yang, H.Y., Lee, Q.P., Rettie, A.E., Juchau, M.R. Mol. Pharmacol. (1994) [Pubmed]
  9. Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Kamali, F., Khan, T.I., King, B.P., Frearson, R., Kesteven, P., Wood, P., Daly, A.K., Wynne, H. Clin. Pharmacol. Ther. (2004) [Pubmed]
  10. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Takahashi, H., Kashima, T., Nomizo, Y., Muramoto, N., Shimizu, T., Nasu, K., Kubota, T., Kimura, S., Echizen, H. Clin. Pharmacol. Ther. (1998) [Pubmed]
  11. Pharmacodynamic and stereoselective pharmacokinetic interactions between zileuton and warfarin in humans. Awni, W.M., Hussein, Z., Granneman, G.R., Patterson, K.J., Dubé, L.M., Cavanaugh, J.H. Clinical pharmacokinetics. (1995) [Pubmed]
  12. Phase II metabolism of warfarin in primary culture of adult rat hepatocytes. Jansing, R.L., Chao, E.S., Kaminsky, L.S. Mol. Pharmacol. (1992) [Pubmed]
  13. Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R- and S-warfarin enantiomers. Yamazaki, H., Shimada, T. Biochem. Pharmacol. (1997) [Pubmed]
  14. Formation of (R)-8-hydroxywarfarin in human liver microsomes. A new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Wienkers, L.C., Wurden, C.J., Storch, E., Kunze, K.L., Rettie, A.E., Trager, W.F. Drug Metab. Dispos. (1996) [Pubmed]
  15. Preferential inducibility of CYP1A1 and CYP1A2 by TCDD: differential regulation in primary human hepatocytes versus transformed human cells. Zhang, Z.Y., Pelletier, R.D., Wong, Y.N., Sugawara, M., Zhao, N., Littlefield, B.A. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  16. Ticrynafen-racemic warfarin interaction: hepatotoxic or stereoselective? O'Reilly, R.A. Clin. Pharmacol. Ther. (1982) [Pubmed]
  17. Stereoselective metabolism of conformational analogues of warfarin by beta-naphthoflavone-inducible cytochrome P-450. Heimark, L.D., Trager, W.F. J. Med. Chem. (1985) [Pubmed]
  18. Drug interaction studies with esomeprazole, the (S)-isomer of omeprazole. Andersson, T., Hassan-Alin, M., Hasselgren, G., Röhss, K. Clinical pharmacokinetics. (2001) [Pubmed]
  19. Effect of quinidine on the 10-hydroxylation of R-warfarin: species differences and clearance projection. Chen, Q., Tan, E., Strauss, J.R., Zhang, Z., Fenyk-Melody, J.E., Booth-Genthe, C., Rushmore, T.H., Stearns, R.A., Evans, D.C., Baillie, T.A., Tang, W. J. Pharmacol. Exp. Ther. (2004) [Pubmed]
  20. Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Yamazaki, H., Shimada, T. Arch. Biochem. Biophys. (1997) [Pubmed]
  21. In vitro stimulation of warfarin metabolism by quinidine: increases in the formation of 4'- and 10-hydroxywarfarin. Ngui, J.S., Chen, Q., Shou, M., Wang, R.W., Stearns, R.A., Baillie, T.A., Tang, W. Drug Metab. Dispos. (2001) [Pubmed]
  22. Main haplotypes and mutational analysis of vitamin K epoxide reductase (VKORC1) in a Swedish population: a retrospective analysis of case records. Osman, A., Enström, C., Arbring, K., Söderkvist, P., Lindahl, T.L. J. Thromb. Haemost. (2006) [Pubmed]
  23. Development of the hepatic mixed-function oxidase system and its metabolism of warfarin in the perinatal rat. MacDonald, M.G., Fasco, M.J., Kaminsky, L.S. Developmental pharmacology and therapeutics. (1981) [Pubmed]
  24. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Scordo, M.G., Pengo, V., Spina, E., Dahl, M.L., Gusella, M., Padrini, R. Clin. Pharmacol. Ther. (2002) [Pubmed]
  25. Kinetic study of cytochrome P450 3A4 activity on warfarin by capillary electrophoresis with fluorescence detection. Zhang, J., Ha, P.T., Lou, Y., Hoogmartens, J., Van Schepdael, A. Journal of chromatography. A. (2005) [Pubmed]
  26. Plasma pharmacokinetics of warfarin enantiomers in cats. Smith, S.A., Kraft, S.L., Lewis, D.C., Freeman, L.C. J. Vet. Pharmacol. Ther. (2000) [Pubmed]
 
WikiGenes - Universities