The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

TRDN  -  triadin

Homo sapiens

Synonyms: CPVT5, TDN, TRISK, Triadin
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of TRDN

  • The average daily weight gain was 3.87 or 3.50 TDN/kg ADG [1].
  • The efficacy of transdermal nitroglycerin patches, releasing 20 mg of active substance over a period of 24 h (TDN 20), was investigated in 10 patients with stable exercise-induced angina pectoris [2].
 

High impact information on TRDN

 

Biological context of TRDN

  • Alanine mutagenesis within this motif demonstrated that the critical amino acids of triadin binding to calsequestrin are the even-numbered residues Lys(210), Lys(212), Glu(214), Lys(216), Gly(218), Gln(220), Lys(222), and Lys(224) [7].
  • Using fluorescence in situ hybridisation, we have assigned the gene encoding human triadin to the long arm of chromosome 6 in the region 6q22-6q23 [8].
  • Two insertions of 9 and 12 residues in the amino acid sequence were observed in the predicted luminal domain of triadin, although the structural and functional consequences of such insertions are expected to be minimal [8].
  • These domains also exhibit sequence homology with triadin [9].
  • CONCLUSIONS: We conclude that the point mutation D307H leads to a profoundly altered conformation that no longer responds normally to Ca(2+) and fails to bind normally to triadin and junctin [10].
 

Anatomical context of TRDN

 

Associations of TRDN with chemical compounds

 

Physical interactions of TRDN

 

Co-localisations of TRDN

 

Regulatory relationships of TRDN

 

Other interactions of TRDN

  • Although increased MOI resulted in increased expression of each receptor isoform, it did not significantly affect the immunopattern of RyRs or the expression levels of calsequestrin, triadin, or FKBP-12 [18].
  • Junctin has recently been shown to bind directly to calsequestrin, the ryanodine receptor, and triadin [9].
  • All of these proteins, calsequestrin, RyR, triadin, SERCAs, and sarcalumenin, are involved in calcium uptake, storage, and release [19].
 

Analytical, diagnostic and therapeutic context of TRDN

References

  1. Plant protein in milk replacers for rearing buffalo calves. II. Effect of replacing 75% of the milk proteins by plant proteins on the preweaning performance of buffalo calves. el-Ashry, M.A., el-Serafy, A.M., Zaki, A.A. Beiträge zur tropischen Landwirtschaft und Veterinärmedizin. (1988) [Pubmed]
  2. Chronic effects of transdermal nitroglycerin in stable angina pectoris: a within-patient, placebo-controlled study. Gibelli, G., Negrini, M., Bruno, A.M., Fiorini, G.L., Lambiase, M., Magenta, G., Corti, D., Prina, L., Pollavini, P.G., De Ponti, C. International journal of clinical pharmacology, therapy, and toxicology. (1989) [Pubmed]
  3. Linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23. Messina, D.N., Speer, M.C., Pericak-Vance, M.A., McNally, E.M. Am. J. Hum. Genet. (1997) [Pubmed]
  4. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Beard, N.A., Laver, D.R., Dulhunty, A.F. Prog. Biophys. Mol. Biol. (2004) [Pubmed]
  5. Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin. Lee, J.M., Rho, S.H., Shin, D.W., Cho, C., Park, W.J., Eom, S.H., Ma, J., Kim, d.o. .H. J. Biol. Chem. (2004) [Pubmed]
  6. Interaction of HRC (histidine-rich Ca(2+)-binding protein) and triadin in the lumen of sarcoplasmic reticulum. Lee, H.G., Kang, H., Kim, D.H., Park, W.J. J. Biol. Chem. (2001) [Pubmed]
  7. Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction. Kobayashi, Y.M., Alseikhan, B.A., Jones, L.R. J. Biol. Chem. (2000) [Pubmed]
  8. Molecular cloning of the cDNA encoding human skeletal muscle triadin and its localisation to chromosome 6q22-6q23. Taske, N.L., Eyre, H.J., O'Brien, R.O., Sutherland, G.R., Denborough, M.A., Foster, P.S. Eur. J. Biochem. (1995) [Pubmed]
  9. Molecular cloning of junctin from human and developing rabbit heart. Wetzel, G.T., Ding, S., Chen, F. Mol. Genet. Metab. (2000) [Pubmed]
  10. Calsequestrin mutant D307H exhibits depressed binding to its protein targets and a depressed response to calcium. Houle, T.D., Ram, M.L., Cala, S.E. Cardiovasc. Res. (2004) [Pubmed]
  11. Human skeletal muscle triadin: gene organization and cloning of the major isoform, Trisk 51. Thevenon, D., Smida-Rezgui, S., Chevessier, F., Groh, S., Henry-Berger, J., Beatriz Romero, N., Villaz, M., DeWaard, M., Marty, I. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  12. Triad proteins and intracellular Ca2+ transients during development of human skeletal muscle cells in aneural and innervated cultures. Tanaka, H., Furuya, T., Kameda, N., Kobayashi, T., Mizusawa, H. J. Muscle Res. Cell. Motil. (2000) [Pubmed]
  13. Redox regulation of signal transduction in cardiac and smooth muscle. Suzuki, Y.J., Ford, G.D. J. Mol. Cell. Cardiol. (1999) [Pubmed]
  14. Membrane topography of cardiac triadin. Caswell, A.H., Brandt, N.R. Arch. Biochem. Biophys. (2002) [Pubmed]
  15. Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. Guo, W., Campbell, K.P. J. Biol. Chem. (1995) [Pubmed]
  16. Location of ryanodine receptor binding site on skeletal muscle triadin. Caswell, A.H., Motoike, H.K., Fan, H., Brandt, N.R. Biochemistry (1999) [Pubmed]
  17. Functional interaction of the cytoplasmic domain of triadin with the skeletal ryanodine receptor. Groh, S., Marty, I., Ottolia, M., Prestipino, G., Chapel, A., Villaz, M., Ronjat, M. J. Biol. Chem. (1999) [Pubmed]
  18. Expression levels of RyR1 and RyR3 control resting free Ca2+ in skeletal muscle. Perez, C.F., López, J.R., Allen, P.D. Am. J. Physiol., Cell Physiol. (2005) [Pubmed]
  19. The origin of tubular aggregates in human myopathies. Chevessier, F., Bauché-Godard, S., Leroy, J.P., Koenig, J., Paturneau-Jouas, M., Eymard, B., Hantaï, D., Verdière-Sahuqué, M. J. Pathol. (2005) [Pubmed]
  20. Molecular properties of excitation-contraction coupling proteins in infant and adult human heart tissues. Jung, D.H., Lee, C.J., Suh, C.K., You, H.J., Kim, d.o. .H. Mol. Cells (2005) [Pubmed]
  21. Molecular cloning and characterization of mouse cardiac triadin isoforms. Hong, C.S., Ji, J.H., Kim, J.P., Jung, D.H., Kim, D.H. Gene (2001) [Pubmed]
 
WikiGenes - Universities